Unconventional superconductivity in double quantum dots

Björn Sothmann¹, Stephan Weiß², Michele Governale³, Jürgen König²

¹Université de Genève ²Universität Duisburg-Essen ³Victoria University Wellington

Outline

Introduction

Symmetry of pair amplitude Classification of superconductivity Unconventional SC in quantum dots

Model

Results

Pair amplitudes Order parameters Transport signatures

Summary

Introduction

Symmetry of pair amplitude

• Consider pair amplitude:

$$F_{\alpha\beta}(\mathbf{r}_1, t_1; \mathbf{r}_2, t_2) = -i \langle T\psi_\alpha(\mathbf{r}_1, t_1)\psi_\beta(\mathbf{r}_2, t_2) \rangle$$

• Pauli principle:

$$F_{\alpha\beta}(\mathbf{r}_1, t_1; \mathbf{r}_2, t_2) = -F_{\beta\alpha}(\mathbf{r}_2, t_2; \mathbf{r}_1, t_1)$$

• Different ways to realize antisymmetry

Classification of superconductivity

Frequency	Spin	Orbital	
+ (even)	- (singlet)	+ (even)	even-singlet
+ (even)	+ (triplet)	- (odd)	even-triplet
- (odd)	+ (triplet)	+ (even)	odd-triplet
- (odd)	- (singlet)	- (odd)	odd-singlet

- Even-singlet: *s*-wave BCS superconductivity
- Even-triplet: Superfluid ³He, Sr₂RuO₄, Majorana nanowires
- Odd-triplet: SFS heterostructures
- Odd-singlet: ???

Unconventional SC in quantum dots

- Can unconventional SC be induced in quantum dots?
- Interplay between superconductivity, strong Coulomb interaction and nonequilibrium
- Quantum dots offer easy tunability of their properties
- Quantum dot as tunable source of even-singlet, even-triplet, odd-triplet and odd-singlet correlations?
- Signatures in transport properties?

Model

Model: Double dot

Effective Dot Hamiltonian for $\Delta \to \infty$

Quantum dots i = L, R

$$H_i = \varepsilon_i \sum_{\sigma} c_{i\sigma}^{\dagger} c_{i\sigma} + \mathbf{B}_i \cdot \hat{\mathbf{S}}_i$$

Intra- and interdot Coulomb interaction

$$H_{\text{inter}} = \sum_{i} U_{i} n_{i\uparrow} n_{i\downarrow} + U \sum_{\sigma\sigma'} n_{\mathsf{L}\sigma} n_{\mathsf{R}\sigma'}$$

Local and nonlocal proximity effect

$$H_{\text{prox}} = -\sum_{i} \frac{\Gamma_{\text{S}i}}{2} \left(c_{i\uparrow}^{\dagger} c_{i\downarrow}^{\dagger} + \text{H.c.} \right) - \frac{\Gamma_{\text{S}}}{2} \left(c_{\text{R}\uparrow}^{\dagger} c_{\text{L}\downarrow}^{\dagger} - c_{\text{R}\downarrow}^{\dagger} c_{\text{L}\uparrow}^{\dagger} + \text{H.c.} \right)$$

Interdot tunneling

$$H_{\rm tun} = t \sum_{\sigma} (c^{\dagger}_{{\rm L}\sigma} c_{{\rm R}\sigma} + {\rm H.C.})$$

Dynamics in Hilbert space

Relevant dot states with even occupation for $U_i \rightarrow \infty$

Empty dot $|0\rangle$, nonlocal singlet $|S\rangle$, 3 triplets $|T^{\sigma}\rangle$

 T^+

Time evolution of density matrix elements $P_{\chi_2}^{\chi_1} = \langle \chi_1 | \rho_{dot} | \chi_2 \rangle$

$$\frac{d}{dt}P_{\chi_2}^{\chi_1}(t) + i\sum_{\chi} \left(h_{\chi_1\chi}P_{\chi_2}^{\chi} - h_{\chi\chi_2}P_{\chi}^{\chi_1}\right)(t) = 0$$

Matrix elements $h_{\chi_1\chi_2} = \langle \chi_1 | H_{ddot} | \chi_2 \rangle$

Results

Pair amplitudes

Pair amplitude $F_{i\sigma i'\sigma'}(t) = \langle T c_{i\sigma}(t) c_{i'\sigma'}(0) \rangle$

• Even/Odd-singlet pair amplitude:

$$F^S_{\rm e/o} = (F_{\rm L\downarrow R\uparrow} - F_{\rm L\uparrow R\downarrow} \mp F_{\rm R\uparrow L\downarrow} \pm F_{\rm R\downarrow L\uparrow})/(2\sqrt{2})$$

• Even/Odd-triplet pair amplitudes:

$$\begin{aligned} F_{\rm e/o}^{T^+} &= (F_{\rm L\uparrow R\uparrow} \mp F_{\rm R\uparrow L\uparrow})/2 \\ F_{\rm e/o}^{T^0} &= (F_{\rm L\downarrow R\uparrow} + F_{\rm L\uparrow R\downarrow} \mp F_{\rm R\uparrow L\downarrow} \mp F_{\rm R\downarrow L\uparrow})/(2\sqrt{2}) \\ F_{\rm e/o}^{T^-} &= (F_{\rm L\downarrow R\downarrow} \mp F_{\rm R\downarrow L\downarrow})/2 \end{aligned}$$

Even-frequency order parameters

Order parameter: Pair amplitude at equal times $\Delta_e = F_e(0)$

For $U_i \to \infty$:

$$\Delta_e^S = P_0^S$$
$$\Delta_e^{T_\alpha} = P_0^{T_\alpha}$$

- Coupling to superconductor Γ_{S} : Even-singlet
- Inhomogenous magnetic field ΔB_{α} : Even-triplet along the inhomogeneity
- Noncollinear magnetic field $\Delta \mathbf{B}
 mid \bar{\mathbf{B}}$: Even-triplet perpendicular to inhomogeneity

In agreement with findings for SFS heterostructures Bergeret, Volkov, Efetov, RMP 2005

Odd-frequency order parameters

- Pair amplitude at equal times vanishes $F_o(0) = 0$
- Consider time-derivative of pair amplitude at equal times $\Delta_o = \left. \frac{dF_o(t)}{dt} \right|_{t=0}$
- Express odd-frequency order parameter in terms of even-frequency order parameters and local and nonlocal expectation value of charge and spin

$$\begin{aligned} \boldsymbol{\Delta}_{\mathsf{o}}^{T} &= -\frac{i}{2}\Delta\varepsilon\boldsymbol{\Delta}_{\mathsf{e}}^{T} + \frac{i}{2}\bar{\mathbf{B}}\Delta_{\mathsf{e}}^{S} + \frac{1}{4}\Delta\mathbf{B}\times\boldsymbol{\Delta}_{\mathsf{e}}^{T} + \frac{i}{2\sqrt{2}}\left(\boldsymbol{\Gamma}_{\mathsf{S}}\mathbf{S} - \boldsymbol{\Gamma}_{\mathsf{SL}}\mathbf{S}_{\mathsf{R}}^{\mathsf{L}} - \boldsymbol{\Gamma}_{\mathsf{SR}}\mathbf{S}_{\mathsf{L}}^{\mathsf{R}}\right)\\ \boldsymbol{\Delta}_{\mathsf{o}}^{S} &= -\frac{i}{2}\Delta\varepsilon\boldsymbol{\Delta}_{\mathsf{e}}^{S} + \frac{i}{2}\bar{\mathbf{B}}\cdot\boldsymbol{\Delta}_{\mathsf{e}}^{T} - \frac{i}{4\sqrt{2}}\left(\boldsymbol{\Gamma}_{\mathsf{S}}\Delta N + \boldsymbol{\Gamma}_{\mathsf{SL}}N_{\mathsf{R}}^{\mathsf{L}} - \boldsymbol{\Gamma}_{\mathsf{SR}}N_{\mathsf{L}}^{\mathsf{R}}\right)\end{aligned}$$

Transport signatures

How to probe unconventional correlations in transport?

- Conventional SC only probes even-singlet pairing
- No unconvential electrodes available
- Indirect signatures needed!
- Contribution from even-singlet dominates transport
- Find situation where current due to even-singlet vanishes

Here: Two examples for detecting triplet correlations in Josephson current

Triplet Josephson current

- Double dots connected via spin-selective barrier
- No Josephson current via spin singlet
- No magnetic field: Only even-singlet pairing: No Josephson current
- Inhomogenous magnetic field: Even- and odd-triplet pairing: Finite Josephson current
- π -junction possible

Fractional Josephson effect

Sothmann, Li, Büttiker, NJP 2013

- Quadruple quantum dot with inhomogenous magnetic field
- Dots can be tuned to host Majorana fermions
- Fractional Josephson effect possible

Summary

Summary & Outlook

- Quantum dots can host unconventional SC
- All types of unconventional SC can be generated
- Tune system between different types of unconventional SC
- Signatures of unconventional SC in transport

• Can one find clear signatures of odd-singlet SC in this system?

