

Tomasz Story Institute of Physics, Polish Academy of Sciences, Warsaw

Topological crystalline insulators - outline

- 1. Introduction topological crystalline insulators (TCI) vs topological insulators (TI)
- 2. IV-VI semiconductors as topological insulators
- 3. Pb_{1-x}Sn_xSe monocrystals growth , structural, chemical and electric characterization
- 4. Angle- and spin-resolved photoemission experiments
- 5. Electronic band structure calculations
- 6. Magneto-transport studies
- 7. Summary and future outlook

Pb_{1-x}Sn_xSe as topological crystalline insulator

Crystal growth: A. Szczerbakow (IP PAS)

Structural and chemical characterization: W. Domuchowski, E. Łusakowska, A. Reszka (IP PAS)

Magneto-transport studies – K. Dybko, M. Szot (IP PAS)

Band structure calculations – R. Buczko (IP PAS)

Photoemission measurements at Lund University (synchrotron facility) and KTH Stockholm (laser facility):
P. Dziawa, B.J. Kowalski (IP PAS), T. Balasubramanian (Lund), M.H. Berntsen, O. Tjernberg, B.M. Wojek (KTH)

Topological insulators: key physical factors

- Inverted c-band and v-band symmetry
- Odd number of Dirac cones
- Strong spin-orbit coupling E_{so}≈E_G
- Metallic, helical Dirac electronic surface states
- Topological protection

Topological insulators - materials

• 3D

- Bi_{1-x}Sb_x
- Bi₂Se₃
- Bi₂Te₃
- 2D
- HgTe/CdTe QW

M.Z. Hasan, C.L. Kane, Rev. Modern Phys. <u>82</u>, 3045 (2010)

Topological crystalline insulators: theoretical idea

Theoretical analysis of electronic band structure of tetragonal crystal with 4-fold surface symmetry. Topologically protected surface TCI states (red) are expected even in materials with no spin-orbit coupling. L. Fu, Phys. Rev. Lett. 106, 106802 (2011).

Topological crystalline insulators SnTe - theoretical analysis

SnTe - TCI states with 4 Dirac cones nearby X-points of the surface Brillouin zone

Lifshitz transition -Topological changes of Fermi surface

T.H. Hsieh et al, Nature Commun. <u>3</u>, 982 (2012).

Topological crystalline insulators: SnTe vs PbTe – theoretical analysis

PbTe – trivial band insulator E_G>0

SnTe – topological insulator (TCl) E_G<0

T.H. Hsieh et al, Nature Commun. <u>3</u>, 982 (2012).

Band inversion in IV-VI semiconductors

P. Barone et al., Phys. Rev. B 88, 045207 (2013)

IV-VI semiconductor family

							2
							Helium
							4.003
		5	6	7	8	9	10
		B	С	Ν	0	F	Ne
		Boron 10.811	Carbon 12.0107	Nitrogen 14.00674	Oxygen 15.9994	Fluorine 18.9984032	Neon 20.1797
		13	14	15	16	17	18
		Al	Si	Р	S	Cl	Ar
		Aluminum 26.981538	Silicon 28.0855	Phosphorus 30.973761	Sulfur 32.066	Chlorine 35.4527	Argon 39.948
	30	31	32	33	34	35	36
	Zn	Ga	Ge	As	Se	Br	Kr
	Zinc 65.39	Gallium 69.723	Germanium 72.61	Arsenic 74.92160	Selenium 78.96	Bromine 79.904	Krypton 83.80
	48	49	50	51	52	53	54
	Cd	In	Sn	Sb	Te	Ι	Xe
	Cadmium 112.411	Indium 114.818	Tin 118.710	Antimony 121.760	Tellurium 127.60	Iodine 126.90447	Xenon 131.29
	80	81	82	83	84	85	86
	Hg	Tl	Pb	Bi	Po	At	Rn
;	Mercury 200.59	Thallium 204.3833	Lead 207.2	Bismuth 208.98038	Polonium (209)	Astatine (210)	Radon (222)
	112	113	114				
	(277)						

Binary compounds:

- PbTe, PbSe, PbS, SnTe, GeTe
- Substitutional solid solutions:
- Pb_{1-x}Sn_xTe, Pb_{1-x}Sn_xSe
- Diluted magnetic semiconductors:
- Sn_{1-x}Mn_xTe, Ge_{1-x}Mn_xTe

IV-VI semiconductors

Rock-salt crystal structure.

Narrow-gap materials (0-0.3 eV) with a direct gap at 4 equivalent L-points . Strong (1 eV) relativistic interactions (spin-orbit and Darwin terms). Small effective masses and high mobilities of electrons and holes. Materials for thermoelectric generators and mid-infrared lasers and detectors.

Electron band structure of IV-VI semiconductors

Relativistic interactions in PbTe and Pb_{1-x}Sn_xTe

$$\widehat{H} = \frac{\widehat{p}^2}{2m_0} + U - \frac{\widehat{p}^4}{8m_0^3 c^2} + \frac{\hbar^2}{8m_0^3 c^2} \nabla^2 U + \frac{\hbar}{4m_0^3 c^2} \widehat{\sigma} (\nabla U \times \widehat{p})$$

Pb_{1-x}Sn_xTe substitutional solid solutions

R. Dornhaus, G. Nimtz, and B. Schlicht, Springer Tracts in Modern Physics vol. 98, Narrow-Gap Semiconductors (Springer, Berlin, 1983)

Pb_{1-x}Sn_xSe substitutional solid solutions

Idea of our TCI project

- Pb_{1-x}Sn_xSe monocrystals (0.18<x<0.3) to observe temperature-driven topological phase transition from trivial insulator to the TCl state
- n-type crystals required for x>x_c (TCI states occupied)
- cleaving at UHV conditions as a versatile method of preparing high crystal quality, atomically clean (001) surfaces
- no surface reconstruction expected
- only Pb_{1-x}Sn_xSe crystals fulfil all these conditions
- Pb_{1-x}Sn_xTe (x>x_c) and SnTe crystals are heavily p-type doped by electrically active native defects (metal vacancies).

Growth of Pb_{1-x}Sn_xSe and Pb_{1-x}Sn_xTe bulk monocrystals

- Self-selecting vapor growth (SSVG) A. Szczerbakow
- Natural (001) crystal facets cleavage planes
- Stoichiometry control of n and p-type conductivity
- Highly homogeneous chemical composition of solid solutions

Growth of bulk PbSnSe crystals by SSVG method

• A. Szczerbakow, Pb_{0.76}Sn_{0.24}Se monocrystal

Pb_{0.77}Sn_{0.23}Se monocrystal grown by self-selecting vapor growth

Structural and chemical characterization

X-ray diffraction (XRD)

EDX chemical analysis

Surface morphology analysis by AFM microscopy

Photoemission – crystal surface sensitive technique

W. Mönch "Semiconductor surfaces and interfaces" 1993

Brillouin zone for (001) surface

Electron band structure of Pb_{0.77}Sn_{0.23}Se ARPES experimental studies

 Energy dispersion relation for temperature varying across band inversion point

Electron band structure of Pb_{0.77}Sn_{0.23}Se ARPES experimental studies

 Energy dispersion E(k) for X-Γ and X-M directions in surface Brillouin zone

Electron band structure of Pb_{0.77}Sn_{0.23}Se ARPES experimental studies

 Fermi surface cuts E(k_x, k_y) for varying binding energy E_b

Trivial insulator (PbSe) vs topological crystalline insulator (Pb_{1-x}Sn_xSe)

PbSe (x=0)

B.M. Wojek et al. 2012

Pb_{0.67}Sn_{0.33}Se, T=87 K, hv=18.5 eV

Band structure of Pb_{1-x}Sn_xTe: tight binding calculations

- PbSnTe in band inversion region:
- A) band insulator
- B) zero bulk band gap
- C) inverted gap TCI
- D) SnTe TCI

Yellow – p-type cation orbitals Blue – p-type anion orbitals

Spin polarization of TCI states: tight binding model – Pb_{0.76}Sn_{0.24}Se

B.M. Wojek, R. Buczko et al. Phys. Rev. B 87, 115105 (2013)

Spin polarization of TCI states in SnTe

S. Safaei, P. Kacman, R. Buczko, Phys. Rev. B <u>88</u>, 045305 (2013) tight binding calculations

Spin polarization of TCI states: SRPES experiment – Pb_{0.76}Sn_{0.24}Se

B.M. Wojek, R. Buczko et al. Phys. Rev. B <u>87</u>, 115106 (2013)

Spin polarization of TCI states: SRPES experiment – Pb_{0.6}Sn_{0.4}Te

• S-Y Xu, ... M.Z. Hasan, Nat. Commun. <u>3</u>, 1192 (2012).

Pb_{0.77}Sn_{0.23}Se: magneto-transport

Pb_{0.77}Sn_{0.23}Se: magneto-transport

Drude model for magneto-conductivity Two parrallel conduction channels Fitting of electron transport parameters σ_{BS} , μ_{BS} , σ_{SS} , μ_{SS} for bulk crystal and surface channels

K. Dybko et al. 2012

STM Pb_{1-x}Sn_xSe

TCI - materials

mature materials

PUBLISHED ONLINE: 30 SEPTEMBER 2012 | DOI: 10.1038/NMAT3449

Topological crystalline insulator states in Pb_{1-x}Sn_xSe

P. Dziawa¹, B. J. Kowalski¹, K. Dybko¹, R. Buczko¹, A. Szczerbakow¹, M. Szot¹, E. Łusakowska¹, T. Balasubramanian², B. M. Wojek³, M. H. Berntsen³, O. Tjernberg³* and T. Story¹*

Observation of a topological crystalline insulator phase and topological phase transition in $Pb_{1-x}Sn_xTe$

Su-Yang Xu¹, Chang Liu¹, N. Alidoust¹, M. Neupane¹, D. Qian^{1,2}, I. Belopolski¹, J.D. Denlinger³, Y.J. Wang⁴, H. Lin⁴, L.A. Wray^{1,3}, G. Landolt^{5,6}, B. Slomski^{5,6}, J.H. Dil^{5,6}, A. Marcinkova⁷, E. Morosan⁷, Q. Gibson⁸, R. Sankar⁹, F.C. Chou⁹, R.J. Cava⁸, A. Bansil⁴ & M.Z. Hasan^{1,10}

Summary

- Topological crystalline insulators (TCIs) are a new class of quantum materials in which the topological protection of metallic surface states is warranted not by time-reversal symmetry as in TI but by specific crystalline symmetries.
- Pb_{1-x}Sn_xSe IV-VI narrow–gap semiconductor is a TCI, in which a temperature-driven topological phase transition is observed from a trivial insulator to a TCI due to band inversion.
- We discussed growth of monocrystals, electronic band structure investigations by angle- and spin-resolved photoemission spectroscopy (ARPES, SRPES), magneto-transport studies, and electronic band structure calculations of $Pb_{1-x}Sn_xSe(x \le 0.4)$.

Future outlook

Topological phase diagram study: $Pb_{1-x}Sn_xSe i Pb_{1-x}Sn_xTe - (T, P)$

Controlling electrical and optical properties

Other surface sensitive experimental methods - STM

Co-existence of ferromagnetism and TCI state in Sn_{1-x}Mn_xTe?

TCI/ferromagnet and TCI/superconductor heterostructures

Influence of lattice distorsion on TCI