

Plasmons in interacting arrays of metallic nanoparticles

Guillaume Weick

Institut de Physique et Chimie des Matériaux de Strasbourg Université de Strasbourg & CNRS

NanoCTM network meeting, Wąsowo, Sept. 23-27

Collaborators

Eros Mariani (University of Exeter)

Claire Woollacott (University of Exeter)

Bill Barnes (University of Exeter)

Ortwin Hess (Imperial College London)

Graphene

electrons behave as massless Dirac fermions (honeycomb lattice + Bloch theorem)

Artificial graphene

Photonic crystals

Haldane & Raghu, PRL 2008 Sepkhanov, Bazaliy, Beenakker, PRA 2007

Acoustic waves

Torrent & Sánchez-Dehesa, PRL 2012

<u>Review</u>: Polini et al., Nature Nanotech. 2013

Plasmonic analogue of graphene

Plasmonic metamaterial

Zhu et al., Plasmonics 2009 Han et al., PRL 2009

Maier et al., Nature Materials 2003

<u>individual nanoparticle</u> localized surface plasmon

nanoparticle array

collective plasmon

(can propagate over macroscopic distances)

subwavelength optics

plasmonic "circuitry"

➡ dipolar collective excitation of the electronic center of mass

➡ dipolar collective excitation of the electronic center of mass

➡ dipolar collective excitation of the electronic center of mass

➡ dipolar collective excitation of the electronic center of mass

dipolar collective excitation of the electronic center of mass

dipolar collective excitation of the electronic center of mass

Gerchikov, Guet, Ipatov, PRA 2002 GW, Ingold, Jalabert, Weinmann, PRB 2006

 $M = N_{\rm e}m_{\rm e}$

Two nanoparticles

Dipole-dipole interaction:

 \blacksquare quasistatic approximation for point-like dipoles $~(r \lesssim a/3 \ll \lambda)$

Brongersma, Hartman, Atwater, PRB 2000 Park & Stroud, PRB 2004

Honeycomb plasmonic lattice:

$$H_{0} = \sum_{s=A,B} \sum_{\mathbf{R}_{s}} \left[\frac{\Pi_{s}^{2}(\mathbf{R}_{s})}{2M} + \frac{M}{2} \omega_{0}^{2} h_{s}^{2}(\mathbf{R}_{s}) \right]$$
$$H_{\text{int}} = \frac{(eN_{\text{e}})^{2}}{\epsilon_{\text{m}} a^{3}} \sum_{\mathbf{R}_{\text{B}}} \sum_{j=1}^{3} \mathcal{C}_{j} h_{\text{B}}(\mathbf{R}_{\text{B}}) h_{\text{A}}(\mathbf{R}_{\text{B}} + \mathbf{e}_{j})$$

 $(\theta,\varphi) : {\rm polarization} \ {\rm of} \ {\rm the} \ {\rm dipoles}$

$$\mathcal{C}_j = 1 - 3\sin^2\theta\cos^2\left(\varphi - 2\pi[j-1]/3\right)$$

nearest-neighbor interactions only

GW, Woollacott, Barnes, Hess, Mariani, PRL 2013

Analogy with electrons in graphene

Bosonic ladder operators:

$$H_{\text{int}} = \hbar\Omega \sum_{\mathbf{R}_{\text{B}}} \sum_{j=1}^{3} C_{j} b_{\mathbf{R}_{\text{B}}}^{\dagger} \left(a_{\mathbf{R}_{\text{B}} + \mathbf{e}_{j}} \right) + a_{\mathbf{R}_{\text{B}} + \mathbf{e}_{j}}^{\dagger} \right) + \text{H.c.} \quad a_{\mathbf{R}} = \sqrt{\frac{M\omega_{0}}{2\hbar}} h_{\text{A}}(\mathbf{R}) + \frac{\mathrm{i}\Pi_{\text{A}}(\mathbf{R})}{\sqrt{2\hbar M\omega_{0}}} \\ b_{\mathbf{R}} = \sqrt{\frac{M\omega_{0}}{2\hbar}} h_{\text{B}}(\mathbf{R}) + \frac{\mathrm{i}\Pi_{\text{B}}(\mathbf{R})}{\sqrt{2\hbar M\omega_{0}}} \\ \Omega = \omega_{0} \left(\frac{r}{a}\right)^{3} \frac{1 + 2\epsilon_{\text{m}}}{6\epsilon_{\text{m}}} \ll \omega_{0}$$

cf. tight-binding Hamiltonian for electrons in graphene!

Graphene	Plasmonic graphene
fermions (electrons)	bosons (plasmons)
AB sublattices linked by kinetic process (hopping of electrons)	AB sublattices linked by <i>interactions</i> (dipole-dipole)
equal hopping matrix elements t	tunable couplings $\hbar\Omega C_j$ (cf. strained graphene)
Ø	$H_0 = \hbar\omega_0 \sum_{\mathbf{R}_A} a^{\dagger}_{\mathbf{R}_A} a_{\mathbf{R}_A} + \hbar\omega_0 \sum_{\mathbf{R}_B} b^{\dagger}_{\mathbf{R}_B} b_{\mathbf{R}_B}$
Ø	anomalous term $\propto b^{\dagger}_{{f R}_{ m B}}a^{\dagger}_{{f R}_{ m B}}+{f e}_{j}$

Exact diagonalization

Starting Hamiltonian:

$$H = \hbar\omega_0 \sum_{\mathbf{q}} (a_{\mathbf{q}}^{\dagger} a_{\mathbf{q}} + b_{\mathbf{q}}^{\dagger} b_{\mathbf{q}}) + \hbar\Omega \sum_{\mathbf{q}} [f_{\mathbf{q}} b_{\mathbf{q}}^{\dagger} (a_{\mathbf{q}} + a_{-\mathbf{q}}^{\dagger}) + \text{H.c.}] \qquad \qquad f_{\mathbf{q}} = \sum_{j=1}^{3} \mathcal{C}_j \exp\left(\mathrm{i}\mathbf{q} \cdot \mathbf{e}_j\right)$$

UNIVERSITÉ DE STRASBOURG

Bogoliubov #I:

$$\begin{aligned} \alpha_{\mathbf{q}}^{\pm} &= \frac{1}{\sqrt{2}} \left(\frac{f_{\mathbf{q}}}{|f_{\mathbf{q}}|} a_{\mathbf{q}} \pm b_{\mathbf{q}} \right) \\ \Rightarrow \quad H &= \sum_{\tau=\pm} \sum_{\mathbf{q}} \left[\left(\hbar \omega_0 + \tau \hbar \Omega |f_{\mathbf{q}}| \right) \alpha_{\mathbf{q}}^{\tau\dagger} \alpha_{\mathbf{q}}^{\tau} + \tau \frac{\hbar \Omega |f_{\mathbf{q}}|}{2} \left(\alpha_{\mathbf{q}}^{\tau\dagger} \alpha_{-\mathbf{q}}^{\tau\dagger} + \text{H.c.} \right) \right] \end{aligned}$$

Bogoliubov #2:

$$\Rightarrow \quad H = \sum_{\tau=\pm} \sum_{\mathbf{q}} \hbar \omega_{\mathbf{q}}^{\tau} \beta_{\mathbf{q}}^{\tau\dagger} \beta_{\mathbf{q}}^{\tau} \qquad \qquad \omega_{\mathbf{q}}^{\pm} = \omega_0 \sqrt{1 \pm 2 \frac{\Omega}{\omega_0} |f_{\mathbf{q}}|}$$

$$\omega_{\mathbf{q}}^{\pm} = \omega_0 \pm \Omega |f_{\mathbf{q}}|$$

gapless modes:
$$|f_{\mathbf{q}}| = 0$$

$$0 \leqslant \frac{(\mathcal{C}_2 + \mathcal{C}_3)^2 - \mathcal{C}_1^2}{4\mathcal{C}_2\mathcal{C}_3} \leqslant 1$$

➡ fully tunable spectrum (polarization)

Dirac-like plasmons

Close to K point:

$$\omega_{\mathbf{k}}^{\pm} \simeq \omega_0 \pm v |\mathbf{k}|$$

group velocity: $v = 3\Omega a/2 \approx c/100$

$$\mathcal{H}_{\mathbf{k}}^{\text{eff}} = \hbar\omega_0 \mathbb{1} - \hbar v \tau_z \otimes \boldsymbol{\sigma} \cdot \mathbf{k}$$

spinor eigenstates:

С

$$\psi^{\pm}_{\mathbf{k},\mathrm{K}} = \frac{1}{\sqrt{2}}(1,\mathrm{e}^{\pm\mathrm{i}\xi_{\mathbf{k}}},0,0)$$

hirality (helicity) $\boldsymbol{\sigma}\cdot\hat{\mathbf{k}} = \pm\mathbb{1}$

Collective plasmons should show similar effects to electrons in graphene

- absence of backscattering
- Klein paradox
- Berry phase of π

• ...

Plasmon polaritons

UNIVERSITÉ DE STRASBOURG

How do plasmons couple to light in periodic arrays of nanoparticles?

PHYSICAL REVIEW

VOLUME 103, NUMBER 5

SEPTEMBER 1, 1956

Atomic Theory of Electromagnetic Interactions in Dense Materials*

U. FANO National Bureau of Standards, Washington, D. C. (Received May 8, 1956)

PHYSICAL REVIEW

VOLUME 112, NUMBER 5

DECEMBER 1, 1958

Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals*†

J. J. HOPFIELD[‡] Physics Department, Cornell University, Ithaca, New York (Received July 16, 1958)

plasmon + photon = plasmon polariton

translational invariance: $\mathbf{k}_{\mathrm{photon}} = \mathbf{k}_{\mathrm{plasmon}}$

Simple cubic lattice

Conclusion

Plasmons in honeycomb lattices of metallic nanoparticles:

- massless Dirac-like bosons
- similar properties as electrons in graphene
- fully tunable spectrum

GW, C. Woollacott, W.L. Barnes, O. Hess, E. Mariani Dirac-like plasmons in honeycomb lattices of metallic nanoparticles Phys. Rev. Lett. **110**, 106801 (2013)

Plasmon polaritons in 3d (cubic) arrays:

- polaritonic band gap can be modified w/ light polarization
- tunable optical properties

GW, E. Mariani

Tunable plasmon polaritons in interacting arrays of metallic nanoparticles unpublished