$\begin{array}{l} \mbox{Properties near magnetic instability of heavy-electron} \\ \mbox{compounds } Ce_3M_4Sn_{13} \mbox{ and } La_3M_4Sn_{13}, \\ \mbox{with } M = Co, \mbox{ Rh}, \mbox{ and } Ru \end{array}$

Andrzej Ślebarski¹

¹Institute of Physics, University of Silesia, 40-007 Katowice, Poland

In Ce₃M₄Sn₁₃ filled cage Kondo systems, where M = Co, Rh, or Ru, thermoelectricity can be strongly enhanced at the low temperatures as a result of sharp features in the electronic density of states at the Fermi energy and the *rattling* effects. Therefore these materials are considered as candidate for low-temperature thermoelectric cooling applications. Ce₃M₄Sn₁₃ and La₃M₄Sn₁₃ have also generated much interest due to their wide physical properties including quantum criticallity and superconductivity. Ce₃M₄Sn₁₃ show a cross-over from a magnetically correlated heavy fermion state to a single impurity state in applied magnetic fields. In order to study the proximity of Ce₃M₄Sn₁₃ to the possible magnetic quantum critical point, we investigated the system of Ce_{3-x}La_xM₄Sn₁₃ alloys and found a critical behaviour near $x \sim 0.6$. The low-temperature thermodynamic properties of Ce₃Ru₄Sn₁₃ are determined by crystal field and Kondo effects. Specific heat and resistivity data show that La₃M₄Sn₁₃ are typical BCS superconductors below T_c , however, La₃Rh₄Sn₁₃ and La₃Ru₄Sn₁₃ exhibit a second superconducting phase between T_c and T_c^* ($T_c < T_c^*$), characteristic of inhomogeneous superconductors.