Raman studies of the charge ordering in organic electronic ferroelectrics $(TMTTF)_2X$ $(X = SbF_6, AsF_6, PF_6, ReO_4, ...)$

B. Barszcz, 1 R. Świetlik, 1 A. Pustogow, 2 and M. Dressel 2

¹Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań. Poland

²1. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany

The organic donor TMTTF (teramethyl-tetrathiafulvalene) and various anions (octahedral: $X = Sb_6$, AsF_6 , PF_6 ; and tetrahedral: $X = ReO_4$, ClO_4 , BF_4) form one-dimensional 2:1 charge-transfer salts with metallic properties. At low temperatures (T = 64 - 230 K) in these salts a charge ordering (CO) is observed which is mainly due to strong electron-electron correlations. The CO effect is directly related with the so-called electronic ferroelectricity. We studied temperature dependence of Raman spectra of the $(TMTTF)_2X$ salts focusing mainly on the charge sensitive C=C and C-S stretching modes which can be used for evaluation of the charge distribution in conducting TMTTF stacks. The C-S bands of molecules with charge +0.5 are assigned to ferroelectric domains, while the bands of neutral $TMTTF^0$ and fully ionized $TMTTF^+$ molecules to domain walls [1].

References:

[1] R. Świetlik, B. Barszcz, A. Pustogow, M. Dressel, Phys. Rev. B 95, 085205 (2017).