Magnetocaloric effect in amorphous $Gd_{65}Fe_{15-y}Co_{5+y}Al_{10}X_5$ (y = 0, 5, 10; X = Al, Si, B) ribbons

N. Pierunek, ¹ Z. Śniadecki, ¹ J. Marcin, ² I. Škorvánek, ² and B. Idzikowski ¹

 $^{1}Institute\ of\ Molecular\ Physics,\ PAS,\ Pozna\'n,\ Poland$

²Institute of Experimental Physics, SAS, Košice, Slovakia

Magnetocaloric effect (MCE) is described as the adiabatic temperature change ΔT_{ad} or the isothermal magnetic entropy change ΔS_M , which is a function of temperature and magnetic field. We focus our attention on MCE in $\mathrm{Gd}_{65}\mathrm{Fe}_{15-y}\mathrm{Co}_{5+y}\mathrm{Al}_{10}\mathrm{X}_5$ (y = 0, 5, 10; X = Al, Si, B) alloys. The synthesized melt-spun materials have amorphous structure, confirmed by XRD. The T_C , determined from M(T) curves by the inflection method ranges from 145 K to 195 K. The values of μ_{eff} for all analyzed samples are equal to about 6 μ_B/atom and are smaller than the magnetic moment of Gd^{3+} free ion, which is equal to 7.94 μ_B , mainly due to the presence of 3d elements. The maximum value of magnetic entropy changes (change in the magnetic field from 0 to 5 T) is 7.1 $\mathrm{Jkg}^{-1}\mathrm{K}^{-1}$ for $\mathrm{Gd}_{65}\mathrm{Fe}_{10}\mathrm{Co}_{10}\mathrm{Al}_{10}\mathrm{B}_5$. The related refrigeration capacity is equal to 748 Jkg^{-1} . All ribbons exhibit second order phase transition, which is confirmed on the basis of the universal curve and field dependent critical exponent n analysis [1].

References:

[1] V. Franco, J.S. Blázquez, A. Conde, Appl. Phys. Lett. 89 (2006) 222512