Density functional study of La and Y-doped BiFeO₃

J. Kaczkowski¹

¹Institute of Molecular Physics PAS, ul. M. Smoluchowskiego 17, 60-179 Poznan, Poland

BiFeO₃ is the only known room-temperature multiferroic, i.e. material that is both ferroelectric and magnetic. The theoretically predicted value of the spontaneous polarization is 90 μ C/cm². Experimentally measured values are usually much lower, which is caused by leakage currents in samples. The usual assumption is that a leakage current occurs as a results of O-vacancies which arise from the variable oxidation state of Fe [1]. Recent theoretical works based on DFT calculations have shown that the Bi- and Fe-vacancies are dominant defects in BFO [2]. In this work we investigated La and Y-doped BFO using DFT calculations. We find that under O-rich condition these dopants have lower formation energies than Bi vacancies (V_{Bi}=6.9 eV, La_{Bi}=-1.4 eV, Y_{Bi}=-2.3 eV). The calculated spontaneous polarization for undoped BFO is 91 μ C/cm², and for La and Y-doped is 83 μ C/cm², 85 μ C/cm², respectively [3].

References:

[1] K. Chybczyńska et al., J. Alloys Compd. 671 (2016) 493

[2] Q. Wu et al., Dalton Trans. 43 (2014) 10787

[3] M. Pugaczowa-Michalska, J. Kaczkowski, J. Mater. Sci. 50 (2015) 6227

This work was supported by the National Science Centre (Poland), Grant no. DEC-2016/21/D/ST3/03444 (SONATA 11)