Charge-ordered phases in the extended Hubbard model

K.J. Kapcia

1Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

Various charge ordered states are relevant to a broad range of materials, e.g. manganites, cuprates, magnetite, doped transition metal compounds (Ti\textsubscript{4-x}V\textsubscript{x}O\textsubscript{7}, WO\textsubscript{3-x}), heavy-fermion systems and organic compounds. The extended Hubbard model is one of the simplest models that captures the interplay between strong correlations and charge-ordering effects [1-3]. The model can describe the insulator-metal transition between phases with long-range charge-order [1]. We present studies of the model with both (i) on-site interaction \(U \) and (ii) intersite density-density interactions between nearest-neighbors \(W_1 \) and next-nearest-neighbors \(W_2 \) beyond the standard two-sublattice assumption [2,3]. In particular, we investigate the effects of next-nearest-neighbor interactions on phase diagrams of the model in different limits and we show that charge-stripes can occur for repulsive \(W_2 > 0 \) for both signs of \(W_1 \) [2].

References:

The partial support from National Science Centre (NCN, Poland) under project No. 2016/21/D/ST3/03385 is acknowledged.