Thickness and composition dependences of magnetic and magnetotransport properties of granular thin films $\text{Co}_x \text{Ag}_{100-x}$

<u>I. Shpetnyi</u>,^{1, 2} S. Vorobiov,¹ I.Yu. Protsenko,¹ M. Matczak,³ K. Załęski,² E. Coy,² G. Nowaczyk,² F. Stobiecki,³ and S. Jurga²

¹Sumy State University, Rimsky-Korsakov Street 2, 40007 Sumy, Ukraine
²NanoBioMedical Centre, AMU, Umultowska 85, 61-614 Poznań, Poland
³Institute of Molecular Physics, PAS,
Smoluchowskiego 17, 60-179 Poznań, Poland

In this contribution we analyze the microstructure, magnetoresistive and magnetic properties of granular alloy films of $\text{Co}_x \text{Ag}_{100-x}$ as a function of sample thickness $(20 \leq d \leq 85 \text{ nm})$ and composition $(15 \leq x \leq 90 \text{ at.\%})$. Samples with different thickness show a nonmonotonic dependence of magnetoresistance as a function of concentration $[\Delta R/R_S(x)]$. For low and high x the magnetoresistance is very weak $(\Delta R/R_S < 0.5\%)$, however the origin of this effect is different. For the low concentration the distance between Co grains is large and the spin dependent transport is reduced. In contrary, for high x the threshold of structural percolation is exceeded and the Co grains are in direct contact. The Co concentration corresponding to the maximal values of $\Delta R/R_S$ increases with the decreasing thickness of the sample. For example, $\Delta R/R_S \approx 12\%$ and 4\% were achieved for d = 85 nm, x = 32 at.% and d = 35 nm, x = 40 at.%, respectively.