Magnetocaloric effect in amorphous and partially crystallized
\(\text{Fe}_{80}\text{Zr}_{7}\text{Cr}_{6}\text{Nb}_{2}\text{Cu}_{1}\text{B}_{4} \) alloy

Agnieszka Łukiewska,\(^1\) Jacek Olszewski,\(^1\) Mariusz Hasiak,\(^2\) and
Piotr Gębara\(^1\)

\(^1\)Institute of Physics, Częstochowa University of Technology,
Armi Krajowej 19, 42-200 Częstochowa Poland

\(^2\)Wrocław University of Science and Technology,
Smoluchowskiego 25, 50-370 Wrocław, Poland

In the present work the microstructure and thermomagnetic properties of
\(\text{Fe}_{80}\text{Zr}_{7}\text{Cr}_{6}\text{Nb}_{2}\text{Cu}_{1}\text{B}_{4} \) ribbon in the as-quenched state and after the accumulative annealing in the temperature range 600 K – 800 K for 10 min were studied using vibrating sample magnetometry and Mössbauer spectroscopy. The second order phase transition from ferro- to paramagnetic state is observed and the Curie temperatures are placed just below 273 K. The maximum value of the magnetic entropy change \((\Delta S_M)\) observed in the vicinity of the Curie point is equal to 0.85 J/(kg K) for the alloy in the as-quenched state. The second, low intensity maximum noticeable near 180 K could be related to supplementary magnetic phase transition. It was confirmed by Mössbauer studies and magnetic measurements performed for zero-field-cooled (ZFC) and field-cooled (FC) regimes.