Physical properties study of the CeOsGa₄ compound

B.M. Sondezi¹ and A.M. Strydom¹

¹Highly Correlated Matter Research Group, Department of Physics, University of Johannesburg, South Africa.

A polycrystalline sample of CeOsGa₄ was prepared by arc-melting stoichiometric quantities of high purity elements. The subsequent Rietveld refinement performed on the powder X-ray diffraction data confirmed that the compound crystallizes in the hexagonal P_{63}/mmc structure. The magnetic susceptibility $\chi(T)$ data showed a distinct anomaly at $T_N=3.9$ K, while the high-T data obeys Curie-Weiss law. The calculated effective moment of $2.52~\mu_B$ was obtained, agreeing with the theoretical moment for a Ce³⁺ ion of $2.54\mu_B$. Magnetization data at T=2 K depicts that CeOsGa₄ does not saturate up to applied magnetic field of 7 T, while the data measured at 9 K indicates that the compounds is purely paramagnetic at that temperature. The low-T specific heat data is characterized by an anomaly at $T_N=3.8$ K confirming the $\chi(T)$ data. Electrical resistivity shows a metallic behaviour at high temperatures with a deviation at low temperatures. In this work we present the study of the effect of the applied magnetic field on the antiferromagnetic ordering temperature in CeOsGa₄.

BMS acknowledges South African National Research Fund (SA-NRF), Thuthuka grant, number 99231, for financial support. AMS acknowledges SA-NRF grant, number 93549, for financial support.