Field-induced multiple slow magnetic relaxation in $[Co(dcnm)(H_2O)(phen)_2](dcnm)$ complex with easy-plane anisotropy

<u>E. Čižmár</u>,¹ K. Ráczová,¹ I. Potočňák,² L. Váhovská,^{2,3} O. Bukrynov,⁴ S. Vitushkina,⁴ and L. Findoráková⁵

¹P.J. Šafárik University, Institute of Physics, Košice, Slovakia
²P.J. Šafárik University, Institute of Chemistry, Košice, Slovakia
³University of Veterinary Medicine and Pharmacy, Košice, Slovakia
⁴V.N. Karazin Kharkiv National University, Kharkhiv, Ukraine
⁵Institute of Geotechnics SAS, Košice, Slovakia

Magnetic relaxation in ionic cobalt(II) complex $[Co(dcnm)(H_2O)(phen)_2](dcnm)$ (dcnm = dicyanonitrosomethanide, phen = 1,10-phenantroline) was studied. Magnetic properties of title compound are dominated by a strong easy-plane anisotropy with energy difference between the two lowest Kramers doublets of 150 cm⁻¹. Two field-induced relaxation channels with distinct dependence on the applied field were observed by ac susceptibility study at low temperatures. It is suggested that a direct spin-phonon relaxation is realized within the ground Kramers doublet and one of the relaxation channels is identified to be mediated by the electron-nuclear interaction.

Supported by APVV-14-0078, ITMS26220120005, and VVGS-PF-2017-273.