Magnetic properties of the $R_2\text{MgCo}_9$ ($R = \text{Y, Nd, Tb}$) compounds and $\text{Nd}_2\text{MgCo}_9\text{H}_{11.4}$ hydride

V. Shtender,¹ V. Paul-Boncour,² R. Denys,¹ and I. Zavaliy¹

¹Karpenko Physico-Mechanical Institute, NASU, Lviv, Ukraine
²Université Paris-Est, ICMPE, CNRS, UPEC, Thiais, France

New $R_2\text{MgCo}_9$ ($R = \text{Y, Nd, Tb}$) compounds have been synthesized by powder sintering method and corresponding hydrides have been prepared by solid gas method. Their crystal structure and magnetic properties have been systematically studied. X-ray diffraction analysis showed that all $R_2\text{MgCo}_9$ compounds belong to the PuNi$_3$-type structure. The $\text{Nd}_2\text{MgCo}_9\text{H}_{11.4}$ hydride preserves PuNi$_3$-type structure with hydrogen-induced volume expansion 16.7%. The influence of the R element on the magnetic properties of $R_2\text{MgCo}_9$ compounds have shown that $R_2\text{MgCo}_9$ ($R = \text{Y, Nd}$) compounds are ferromagnetic (ferrimagnetic for Tb) with high Curie temperature $T_C = 612, 635$ and 525 K respectively. A spin reorientation at 407 and 225 K have been observed for $R_2\text{MgCo}_9$ ($R = \text{Y, Nd}$) respectively. Hydrogenation of Nd_2MgCo_9 causes the decrease of the transition temperatures due to a weakening of the magnetic interactions and probably a change of magnetic order (to antiferromagnetic with $T_N = 265$ K) and various spin reorientations at lower temperatures [1].

References: