Magnetocaloric properties of Ga$_x$Fe$_{3-x}$O$_4$ nanoparticles coated with chitosan

M. Orzechowska,1 K. Rećko,2 W. Olszewski,2 A. Miaskowski,3 B. Kalska,4
U. Klekotka,4 and D. Soloviov5,6,7

1Doctoral School of Sciences and Natural Sciences,
University of Białystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland
2Faculty of Physics, University of Białystok,
K. Ciołkowskiego 1L, 15-245 Białystok, Poland
3Department of Applied Mathematics and Computer Science,
University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
4Faculty of Chemistry, University of Białystok,
K. Ciołkowskiego 1K, 15-245 Białystok, Poland
5Frank Laboratory of Neutron Physics,
Joint Institute for Nuclear Research Joliot-Curie-6 141980 Dubna, Moscow region, Russia
6Moscow Institute for Physics and Technology, Dolgoprudny, 141701 Russia
7Institute for Safety Problems of NPP,
36-a Kirova St, 07270, Chornobyl, Kyiv, Ukraine

The use of magnetic nanoparticles in magnetic fluid hyperthermia and a growing interest in nanotechnology cause development of variety of isostoichiometric materials of different shapes [1,2]. Small angles neutron scattering, as well as transmission and scanning electron microscopy measurements, confirm the change in shape of core and core-shell nanoparticles of gallium-iron oxides from parallelepiped to spherical ones [3,4]. According to magnetization and Mössbauer spectroscopy results, gallium-doped magnetite particles belong to very soft magnetic materials. Due to nano-size of core type particles, they exhibit a variety of superparamagnetic behavior versus temperature. The X-ray diffraction patterns confirm a single phase of the reverse spinel structure as the Massart synthesis result. Admixture in the form of trivalent gallium as a non-magnetic ion significantly modifies the magnetic ordering of ferrite. Calorimetric measurements disclosed large sensitivity of the specific absorption rates of electromagnetic radiation at 10^5 Hz frequency range versus ferrofluid concentration dispersed in water (10 mg/mL, 5 mg/mL, and 2.5 mg/mL). Magnetism of Ga$_x$Fe$_{3-x}$O$_4$ with $0 < x < 1.5$ particles coated with chitosan was tested in external fields up to 1.3 T.

References:

This work was supported by the National Science Centre under grant OPUS no 2018/31/B/ST3/00279 and the Polish Government Plénipotentiaire for JINR in Dubna (Project no PWB/168-10/2021) and the Polish Ministry of Science and Higher Education under subsidy for maintaining the research potential of the Faculty of Physics, University of Białystok.