Hysteresis of the frequency spin wave excitations in Ir/Co/Pt multilayers with Dzyaloshinskii-Moriya interaction

1 Faculty of Physics, University of Białystok, Białystok, Poland
2 Faculty of Physics, Adam Mickiewicz University, Poznań, Poland
3 Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland

Multilayered systems consisting of ferromagnetic layers alternating with non-magnetic heavy metal layers exhibiting perpendicular magnetic anisotropy (PMA) and Dzyaloshinskii-Moriya Interaction (DMI) are now intensively studied because of interesting physics and potential applications e.g. skyrmion-hosting systems [1]. The evolution of topological skyrmions as a function of Co thickness d has been recently studied across the Spin Reorientation Transition (SRT) in (Pt/Co(d)/Ta)$_N$ (N – number of repetitions) multilayers using Lorentz Transmission Electron Microscopy [2]. Close to the SRT, it is possible to perform Brillouin Light Scattering (BLS) studies of spin wave excitations even without applying external magnetic fields H.

In the present work, we investigated (Ir/Co(d)/Pt)$_N$ multilayers with negative effective uniaxial anisotropy and large DMI. The samples were deposited by magnetron sputtering with $N=1$ or $N=6$. Using Longitudinal Magneto Optical Kerr Effect (LMOKE) and magnetic force microscopies we determined the following magnetization configuration: large macrodomains (several dozen micrometers size) with in-plane “core” magnetization which are modulated by small nanodomains (about 100 nm size) differentiated by out-of-plane magnetization. Using BLS spectrometer, the hysteresis behaviors of the DMI sensitive: Stokes f_S and anti-Stokes f_{AS} frequencies as well as their frequencies difference Δf as the functions of the in-plane magnetic field were observed. The BLS signal is related to the in-plane “core” magnetization component of domains. The hysteresis of $\Delta f(H)$ is correlated with the switching of the large macrodomains observed with LMOKE. These experimental results are supported by micromagnetic simulations.

References: