Magnetic instabilities in $K_2Cr_3As_3$

<u>A. Galluzzi</u>,^{1,2} G. Cuono,³ A. Romano,^{1,2} J. Luo,^{4,5,6} C. Autieri,^{2,3} C. Noce,^{1,2} and M. Polichetti^{1,2}
¹Department of Physics "E.R. Caianiello", University of Salerno, via Giovanni Paolo II, 132, Fisciano (SALERNO), I-84084, Italy
²CNR-SPIN Salerno, via Giovanni Paolo II, 132, Fisciano (SALERNO), I-84084, Italy
³International Research Centre Magtop, Institute of Physics, Polish Academy of Sciences, Aleja Lotnik ow 32/46, PL-02668 Warsaw, Poland
⁴Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
⁵Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
⁶School of Physical Sciences, University of Chinese

Academy of Sciences, Beijing 100190, China

The magnetic response of a $K_2Cr_3As_3$ sample has been studied by means of dc magnetization measurements as a function of magnetic field (H) at different temperatures ranging from 5 K up to 300 K. Looking at the magnetic hysteresis loops m(H), a diamagnetic behavior of the sample has been inferred at temperatures higher than 60 K, whereas at lower temperatures the sample shows a ferrimagnetic behavior. Moreover, several spike-like magnetization jumps, both positive and negative, have been observed at certain fields in the range -1000 Oe < H < 1000 Oe, regardless of the temperature considered. The field position of the magnetization jumps has been studied at different temperatures, and their distribution can be described by a Lorentzian curve. Finally, a possible explanation of the microscopic mechanisms leading to the presence of these magnetization instabilities has been provided.