Magnetic instabilities in $K_2Cr_3As_3$

A. Galluzzi,1,2 G. Cuono,3 A. Romano,1,2 J. Luo,4,5,6 C. Autieri,2,3
C. Noce,1,2 and M. Polichetti1,2

1Department of Physics “E.R. Caianiello”,
University of Salerno, via Giovanni Paolo II,
132, Fisciano (SALERNO), I-84084, Italy
2CNR-SPIN Salerno, via Giovanni Paolo II,
132, Fisciano (SALERNO), I-84084, Italy
3International Research Centre Magtop,
Institute of Physics, Polish Academy of Sciences,
Aleja Lotników 32/46, PL-02668 Warsaw, Poland
4Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
5Songshan Lake Materials Laboratory,
Dongguan, Guangdong 523808, China
6School of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, China

The magnetic response of a $K_2Cr_3As_3$ sample has been studied by means of dc magnetization measurements as a function of magnetic field (H) at different temperatures ranging from 5 K up to 300 K. Looking at the magnetic hysteresis loops m(H), a diamagnetic behavior of the sample has been inferred at temperatures higher than 60 K, whereas at lower temperatures the sample shows a ferrimagnetic behavior. Moreover, several spike-like magnetization jumps, both positive and negative, have been observed at certain fields in the range $-1000 \text{ Oe} < H < 1000 \text{ Oe}$, regardless of the temperature considered. The field position of the magnetization jumps has been studied at different temperatures, and their distribution can be described by a Lorentzian curve. Finally, a possible explanation of the microscopic mechanisms leading to the presence of these magnetization instabilities has been provided.