Electron-phonon coupling in the copper intercalated Bi$_2$Se$_3$ hybrid devices.

M. Wiesner,1 A. Zyuzin,2 K. Koski,3 A. Laitinen,2 J. Manninen,2 and P. Hakonen2

1Faculty of Physics, Adam Mickiewicz University, Poland

2Low Temperature Laboratory, Department of Applied Physics, Aalto University, Finland

3Department of Chemistry, University of California Davis, Davis California USA

We investigated charge and heat transport in copper intercalated Bi$_2$Se$_3$ topological insulator in temperatures ranging from 15 mK up to 250 K. Both superconducting aluminium leads and normal, golden leads were employed for contacting the samples. Measurements of magnetoconductivity of the Al-contacted sample were performed at temperature $T = 100$ mK using magnetic fields ranging from 0 T up to 5 T. Fitting results of the experiment with the HLN model1 were consistent with weak localization, and it yielded the materials parameters: the coherence length (33 nm), mean-free path (12 nm), spin-orbit scattering length (19 nm) and mobility (593 cm2/Vs). Weak localisation and electron-electron interactions2 were major processes contributing to the conductivity in the Au-contacted sample.

Disorder-related small unit cell deformation of the topological insulator enhanced separation of the in-plane and cross-plane processes. Such separation resulted in charge and phonon confinement in quintuple layers of the topological insulator. Shot noise measurements revealed that heat transport in the layered material is more sensitive to such an anisotropy than charge transport. The anisotropy was reflected in the heat flux investigated in three temperature ranges. The heat flux showed T^2 temperature dependence at $T < 7$ K, which changed to T^3 at 7 K $< T < 12$ K and to T^4 at $T > 12$K. A model of electron scattering on transverse acoustic phonons taking into account dynamic and static disorder as well as the Kapitza3 resistance originating from the mismatch between acoustic phonons impedances of an investigated material and a substrate is found to be in accordance with the data.

References:

This work was supported by Aalto University ASci grant, the Academy of Finland project 310086 (LTnoise), and European Microkelvin Platform (EU Horizon 2020 Grant No. 824109). The paper was partially sponsored by Polish National Centre of Science (NCN) grant 2015/17/B/ST3/02391. AZ work is supported by the Academy of Finland Grant No. 308339. AZ is grateful to the hospitality of the Pirinem School of Theoretical Physics.