New insights on the Dzyaloshinskii-Moriya interaction
R. Cardias,1 A. Bergman,2 A. Szilva,2 Y. O. Kvashnin,2 A. B. Klautau,1 O. Eriksson,2,3 and L. Nordström2

1Faculdade de Física, Universidade Federal do Pará, Belém, PA, Brazil
2Department of Physics and Astronomy, Uppsala University, 75120 Box 516 Sweden
3School of Science and Technology, Örebro University, SE-701 82, Örebro, Sweden

We have derived an expression of the Dzyaloshinskii-Moriya interaction (DMI), where all the three components of the DMI vector can be calculated independently, for a general, non-collinear magnetic configuration. The formalism is implemented in a real space – linear muffin-tin orbital – atomic sphere approximation (RS-LMTO-ASA) method. We have tested our implementation for systems such as Mn3Sn, trimers Cr on Au(111) and Mn on Ag(111) and Au(111); as well as Mn dimer on W(001). Our results have shown that non-collinear magnetism changes drastically the values and directions of the DMI and differently from the conventional DMI, that discrepancy does not come directly as a spin-orbit coupling effect. We give a macroscopic explanation to this by dividing the DMI into spin- and charge-currents contribution and studying the relation between the non-collinearity and the emergence of these currents. For the dimer case, we explicitly show the part of the DMI that comes from the spin-orbit coupling and the part of the DMI that comes from the non-collinearity. It highly suggests that, in small clusters, high-order of DMI-like terms in the spin-Hamiltonian become strongly relevant, e.g. four-spin, six-spin interactions. We believe that these results are important in the study of excited states of small clusters and its spin-dynamics.