Electronic structure and magnetic properties of Dy-doped Bi$_2$Te$_3$

A. B. Shick1 and F. Máca1

1Institute of Physics, Czech Academy of Sciences, Na Slovance 2, Prague 8, Czech Republic

Doping the topological insulator Bi$_2$Te$_3$ with rare-earth ions is a way to introduce the high magnetic moments into the material [1]. Ferromagnetic order can break time-reversal symmetry, opening a gap in the topological surface states. The correlated band theory implemented as a combination of the relativistic density functional theory with the Anderson impurity model [2] is applied to theoretical investigation of the electronic and magnetic character, and the magnetic anisotropy for Dy-doped Bi$_2$Te$_3$ topological insulator. For both ferro- and anti-ferromagnetic Dy-planes in Bi$_2$Te$_3$ we found the in-gap flat f-bands located at the top of the valence band of Bi$_2$Te$_3$. The positive uniaxial MAE is predicted for (Dy$_x$Bi$_{1-x}$)$_2$Te$_3$ with $x = 0.33$. The experimental resonant photoemission spectra are well reproduced by the calculations [3]. These studies can be important to explore the potential use of rare-earth doped topological insulators in the low-power spintronic devises.

References:

Financial support was provided by Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21 - CZ.02.1.01/0.0/0.0/16_019/0000760), and by the Czech Science Foundation (GACR) grant No. 18-06240S.