Magnetic suscetibility studies of the $(Cr_{84}Re_{16})_{100-x}V_x$ alloy system

BS Jacobs,¹ ARE Prinsloo,¹ and CJ Sheppard¹

¹Cr Research Group, Department of Physics, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa

The temperature dependence of magnetic susceptibility, $\chi(T)$ is a suitable measurement in determining the magnetic ordering temperature, obtaining information regarding density of states [1], as well as to detect the presence of localised moments [2]. In accordance with previous studies on $\operatorname{Cr}_{100-u}\operatorname{Re}_{u}$ alloys [3], $\chi(T)$ measurements of the $(Cr_{84}Re_{16})_{100-x}V_x$ alloy system exhibit anomalies at Néel temperature T_N associated with the onset of the antiferromagnetic (AF) spin-density-wave (SDW) state. These anomalies become more pronounced as x increases. T_N determined from $\chi(T)$ measurements are in close agreement with T_N obtained from the measurement of temperature dependence of electrical resistivity, $\rho(T)$. Prominent broad deep minima are observed in $\chi(T)$ upon cooling below 100 K followed by low temperature upturns for samples with x = 10.9 and x = 12.4 which may be attributed to a Curie tail arising from oxide impurities [4]. A second anomaly, not associated with T_N , but having the same trend, is observed at a temperature $T_o < T_N$ for alloys with x = 0, 1.3, 2.4, 4.4, 5.7 and 6.9. T_o observed in the x = 0 alloy has value 309 \pm 2 K which is very close to 308 K, the transition temperature of AF Cr_2O_3 [5]. The presence of Cr_2O_3 was confirmed using neutron diffraction study of the $Cr_{84.7}Re_{15.3}$ alloy [6]. However, the value of T_o obtained from $\chi(T)$ decreases with an increase in x indicating that the oxide is most likely a V doped oxide of Cr having the formula $(\operatorname{Cr}_{100-\delta} V_{\delta})_2 O_3$. x dependence of T_N obtained from $\rho(T)$ and $\chi(T)$ measurements were fitted with a power law yielding $x_c = 10.47 \pm 0.03$, the critical concentration at which antiferromagnetism (AFM) disappears. It is therefore evident that the low temperature upturns for samples with x = 10.9 and x = 12.4 is associated with the $(\operatorname{Cr}_{100-\delta} V_{\delta})_2 O_3$ oxide. Curie-Weiss (CW) behaviour in the $(\operatorname{Cr}_{84} \operatorname{Re}_{16})_{100-x} V_x$ alloy system was tested by plotting χ^{-1} as a function of T and fitting the CW equation [2] to the experimental data above T_N . A positive gradient of the fit confirms CW behaviour [7] which was observed in the x = 5.7, 10.4, 10.9 and 12.4 alloys suggesting the existence of local moments at $T > T_N$.

References:

[1] CH Chiu, MH Jericho and RH March, Can. J. Phys. 49 3010 (1971).

[2] E Fawcett, HL Alberts, VY Galkin, DR Noakes and JV Yakhmi, Rev. Mod. Phys. 66 25 (1994).

[5] RV Pisarev, BB Krichevstov and VV Pavlov, Phase Transit. 37 63 (1991).

[6] B. S. Jacobs, A. R. E. Prinsloo, A. M. Venter, Z. N. Sentsho, A. J. Studer and C. J. Sheppard, AIP Advances 11 015037 (2021).

[7] AJA de Oliveira, WA Ortiz, OF de Lima and PC de Camargo, J. Appl. Phys. 81 4209 1997.

^[3] A Arajs, G Kote, CA Moyer, JR Kelly, KV Rao and EE Anderson, Phys. Stat. Sol. (b) **74** K 23 (1976).

^[4] MJ Wagner, JL Dye, E Pérez- Cordero, R Buigas and L Echegoyen, J. Am. Chem. Soc. 117 1318 (1995).