Mössbauer study of YFe₂Ge₂

K. Komędera,¹ A. Błachowski,¹ J. Żukrowski,² and Z. Bukowski³

 ¹Mössbauer Spectroscopy Laboratory, Institute of Physics, Pedagogical University, Kraków, Poland
²Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Kraków, Poland
³Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland

The YFe₂Ge₂ crystallizes isostructural to the AFe₂As₂ (A = Ca, Ba, Eu, K) iron-pnictide parent compounds and superconductors. Superconductivity with $T_c = 1.8$ K is strongly dependent on the sample quality and disorder caused by Fe atoms deficiency on the Fe site. The coexistence of ferromagnetic and stripe-type antiferromagnetic spin fluctuations within the Fe plane was recently found by neutron scattering. ⁵⁷Fe Mössbauer spectroscopy measurements were performed versus temperature down to 1.5 K for the YFe₂Ge₂ powdered single-crystal sample grown out of Sn flux. Spectra at room temperature (RT) and 80 K have a shape of broadened pseudo-single line with the quasi-continuous distribution of quadrupole doublets. A distribution is caused by the spatial modulation of the electric field gradient, which can be interpreted as a consequence of the incommensurate modulation of the charge density on the Fe nuclei, i.e., the charge density wave (CDW). The isomer shift at RT is equal to 0.34 mm/s, which is significantly less than 0.43 mm/s for BaFe₂As₂. It means that d-electrons density is significantly lowered in YFe₂Ge₂ in comparison to non-superconducting parent compound BaFe₂As₂. Hence, the system can be considered as strongly hole-doped, similar to KFe₂As₂ superconductor. Spectra at 4.2 K and 1.5 K are significantly broadened due to the spatial modulation of a weak hyperfine magnetic field with the average values about 1.3 and 1.5 Tesla, respectively. The magnetic nature of the spectra close to the ground state can be interpreted as a consequence of the spin fluctuations and indicates that the system is close to magnetic instabilities.

This work was supported by National Science Centre, Poland (Grant No. 2018/29/N/ST3/00705).