Quantum and classical aspects of a low-temperature $(\sim 500 \text{ mK})$ magnetic phase transition in aluminoborates

T. Zajarniuk,¹ <u>A. Szewczyk</u>,¹ P. Wiśniewski,² M. U. Gutowska,¹ R. Puźniak,¹ H. Szymczak,¹ I. Gudim,³ V. A. Bedarev,⁴ and P. Tomczak⁵

¹Institute of Physics, Polish Academy of Sciences, Warsaw, Poland

²Institute of Low Temperature and Structure Research, PAS, Wroclaw, Poland

³Kirensky Institute of Physics, Krasnoyarsk, Russia

⁴B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine ⁵Faculty of Physics, Adam Mickiewicz University, Poznan, Poland

Specific heat, C_B , of $RAl_3(BO_3)_4$ single crystals with R = Tb, Dy, Gd was studied for 50 mK < T < 300 K, with emphasis on the T < 1 K range, where a phase transition was found. For the Tb compound, which will be analyzed further as an example, the transition appears at $T_c = 0.68$ K. Nuclear, non-phonon, and lattice contributions to C_B were separated. Based on C_B and magnetization, M, studies, we established that the phase transition shifts to lower temperatures with increase in magnetic field $\mathbf{B}_{||}$, parallel to the easy magnetization axis. We found that the critical, i.e., related to the transition, contribution to the specific heat, C_{cr} , shows an unusual $C_{cr} \sim T^{y_0}$ dependence on T, and that the Grüneisen ratio, Γ , defined as:

$$\Gamma = -\frac{1}{T} \frac{(\partial S/\partial B)_T}{(\partial S/\partial T)_B} = -\frac{(\partial M/\partial T)_B}{C_B(T)} = \frac{1}{T} \left(\frac{\partial T}{\partial B}\right)_S,\tag{1}$$

where S is entropy, diverges as a function of $B_{||}$ for $B_{||}$ approaching a critical value of 0.6 T. The behaviors of both $C_{\rm cr}$ and Γ as a function of T (especially scaling of Γ for $B_{||} \ge 0.30$ T), and dependence of Γ on $B_{||}$ are characteristic of systems, in which the classical phase transition line is influenced by quantum fluctuations, QF, and ends at quantum critical point. Using the determined y_0 and Γ values, we assessed the dynamical critical exponent z to be $0.82 \le z \le 0.96$. Based on these results, we suppose that QF dominate the behavior of the system and destroy the long range order, i.e., we suppose the transition found to have a quantum character. Its physical nature is not clear. The interpretation that this is the transition to the ferromagnetic ordering of Tb^{3+} magnetic moments is the most natural and supported by the Mstudies. However, such a classical transition should be smeared and shifted to higher T by B_{\parallel} , while we observe the opposite effect. It was observed, e.g., in systems, in which exchange and magnetic dipolar interactions were of similar strength [1]. Also the possibility, that the transition is related to any other ordering, e.g., multipolar, and the ordering of the Tb^{3+} moments is a "side effect" only can not be ruled out. **References:**

[1] G. Mennenga, L.J. de Jongh, W.J. Huiskamp, J. Magn. Magn. Mater. 44, 59 (1984).

This work was supported partially by the National Science Centre, Poland, under project No. 2018/31/B/ST3/03289.