Carrier transport in heavily Sb-doped Si layers near the Mott transition

Alexander K. Fedotov,¹ D. Yurasov,² J. Pshevosnik,³ J.A. Fedotova,¹ V. Golovchuk,¹ A. Novikov,³ and S. Gökçe⁴

¹Institute for Nuclear Problems of Belarusian State University, 220006 Minsk. Belarus

²Institute for Physics of Microstructures Russian Academy of Sciences, 603950 Nizhny Novgorod. Russia

³AGH University of Science and Technology, 30-059 Kraków, Poland

⁴Department of Physics, Gebze Technical University, Gebze, Kocaeli, 41400, Türkiye

We studied spin-resolved components of resistivity tensor $\rho_{xx}(T,B)$ and $\rho_{xy}(T,B)$ and magnetization M(T,B) on temperature T and magnetic field B in thin epitaxial Si layers heavily doped with Sb which were initiated by spins arised on paramagnetic "dangling bonds" at the Si < Sb > layers surface when epitaxial growing process. The Si<Sb> 10-12 nm thick layers were epitaxially grown on the p-Si(001) 12 $\Omega \times cm$ substrate covered with 100 nm thick lightly-doped buffer and capping Si layers [1]. Studies have shown the following 3 features of $\rho_{xx}(T,B)$ and $\rho_{xy}(T,B)$ dependences in Si<Sb> layers: (1) $\rho_{xx}(T,B)$ and $\rho_{xy}(T,B)$ dependences in samples without capping Si layer includes 2 contributions: (1) from Sb impurity in Si<Sb> layer bulk and (2) from "dangling bonds" on Si < Sb > layer surface. As a result, the Hall resistance component is described by the relation $\rho_{xy}(T,B) = R_o B + R_a M$, where R_o and R_a are the ordinary (OHE) and anomalous (AHE) Hall effect constants, respectively, M is the magnetic moment of paramagnetic centers and $\rho_{xx}(T,B) \sim B^2$. (2) Below 10-15 K, our measurements have shown a linear change of σ_{xx} with $L_n(T)$ that is typical for weakly disordered two-dimensional (2D) semiconductors and metals and is described by the interference quantum corrections (QC) to the Drude conductivity in weaklylocalized systems [3]. The QC contribution to low-T $\rho_{xx}(T,B)$ is also confirmed by its suppressing at low values of B \sim 0.1 T. (3) The estimation of the appropriate Thouless lengths L_{TH} from fitting of $\sigma_{xx}(T,B)$ dependences has shown a power-like function $L_{Th} \sim T^{-p/2}$, where p is constant depending on the scattering mechanism of carriers [2]. The best agreement with the experimental data was achieved with p values close to 1 that corresponds to the 2D quantum corrections theory [3].

References:

 A.K.Fedotov, U.Gumiennik, V.Skuratov, D.Yurasov, J.Fedotova, A.Novikov, A.Fedotov, P.Apel. Physica E: Low-dimensional Systems and Nanostructures, 2021, 138,115047.

[2] B. L. Al'tshuler and A. G. Aronov, in Electron-Electron Interaction in Disordered Systems, edited by A. L. Efros and M. Pollak, North-Holland, Amsterdam, 1987.