Many-body correlations in one-dimensional optical lattices with alkaline-earth(-like) atoms

V. Bilokon,^{1,2} E. Bilokon,^{1,2} M. C. Bañuls,³ A. Cichy,^{1,4} and A. Sotnikov^{2,5}

¹Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
²Karazin Kharkiv National University, Svobody Sq. 4, 61022 Kharkiv, Ukraine
³Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
⁴Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55099 Mainz, Germany
⁵Akhiezer Institute for Theoretical Physics, NSC KIPT, Akademichna 1, 61108 Kharkiv, Ukraine

We explore the rich nature of correlations in the ground state of ultracold atoms trapped in state-dependent optical lattices [1]. In particular, we consider interacting fermionic ytterbium or strontium atoms, realizing a two-orbital Hubbard model with two spin components. We analyze the model in one-dimensional setting with the experimentally relevant hierarchy of tunneling and interaction amplitudes by means of exact diagonalization and matrix product states approaches, and study the correlation functions in density, spin, and orbital sectors as functions of variable densities of atoms in the ground and metastable excited states. We show that in certain ranges of densities these atomic systems demonstrate strong density-wave, ferro- and antiferromagnetic, as well as antiferroorbital correlations.

References:

[1] V. Bilokon, E. Bilokon, M. C. Bañuls, A. Cichy, A. Sotnikov, arXiv:2302.10854.

The work is supported by the National Research Foundation of Ukraine, Grant No. 0120U104963.