Multiferroicity with improper ferroelectricity and uniaxial ferromagnetism in EuAl₁₂O₁₉

<u>G. Bastien</u>,¹ A. Eliáš,¹ Q. Courtade,¹ T. Haidamak,¹ D. Repček,² M. Savinov,² P. Proschek,¹ M. Vališka,¹ M. Kratochvílová,¹ S. Kamba,² and R. H. Colman¹

¹Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Prague, Czech Republic ²Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic

We report the discovery of a multiferroic phase in EuAl₁₂O₁₉ with ferroelectric ordering at $T_e=50$ K and a ferromagnetic ordering at $T_C=1.3$ K. EuAl₁₂O₁₉ is a quasi-two dimensional ferromagnet with magnetic ions Eu²⁺ building a planar triangular lattice. The magnetic ground state is ferromagnetic with a strong magnetic anisotropy, which may results from allowed Dzyaloshinskii–Moriya interactions. At the center of every second triangle of magnetic ions sits an electric dipoles AlO₅. The electric dipoles form also a triangular lattice, which may realize ferroelectric frustration, an analog of the famous problem of frustrated magnetism on a triangular lattice. These electric dipoles order via an improper ferroelectric phase transition at $T_e=50$ K leading to an unusual case of type I multiferroicity in EuAl₁₂O₁₉.