Effects of Ni doping on structural and magnetic properties of copper ferrite

Zbigniew S. Piskuła,
1 Jolanta Darul,
1 Tomasz Toliński,
2 and Waldemar Nowicki^1 $% \mathcal{S}^{(1)}$

¹Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland ²Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland

The aim of this work was to obtain more information about the influence of small quantities of Ni²⁺ ion on the structural and magnetic properties of the tetragonally distorted of Cu_{1-x}Ni_xFe₂O₄. A series of ferrite samples of the chemical composition Cu_{1-x}Ni_xFe₂O₄ (with x = 0.0; 0.05; 0.1 and 0.15) prepared by the combustion method using citrate-nitrate precursors. The samples underwent a successive thermal treatment in air 300, 600, and 900°C for 4 hours. After heating, the preparations were either cooled slowly to the room temperature. Structural analysis results for tetragonal copper ferrite indicated that above 360°C a part of copper ions moves into the tetrahedral sites and structural tetragonal ($I_{41}amd$) \rightarrow cubic (Fd3m) phase transition appears. Substitution with small quantities of nickel ions clearly decreases the temperature of structural transformation for Cu_{1-x}Ni_xFe₂O₄ system. The obtained result indicates that the distribution of cations has a great influence on the structural and magnetic properties of the modified copper ferrites.