Investigation of Magnetocaloric Effect in $RE_5Pd_2In_4$ (RE = Tb-Tm) Compounds

Altifani Rizky Hayyu,^{1,2} Stanisław Baran,² and Andrzej Szytuła²

¹ Jagiellonian University, Doctoral School of Exact and Natural Sciences, Faculty of Physics, Astronomy and Applied Computer Science, prof. Stanisława Łojasiewicza 11, PL-30-348 Kraków, Poland ² Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, prof. Stanisława Łojasiewicza 11, PL-30-348 Kraków, Poland

Magnetocaloric measurements of the $RE_5Pd_2In_4$ (RE = Tb-Tm) rare earth compounds were examined with the use of the Vibrating Sample Magnetometer (VSM) option of the Physical Properties Measurement System by Quantum Design. The maximum magnetic entropy change $(-\Delta S_M^{max})$ at magnetic flux density change $(\Delta \mu_0 H)$ 0–9 T was determined to be 3.3 J·kg⁻¹·K⁻¹ at 60 K for Tb₅Pd₂In₄, 7 J·kg⁻¹·K⁻¹ at 20 K for $Dy_5Pd_2In_4$, 12.6 $J\cdot kg^{-1}\cdot K^{-1}$ at 20 K for $Ho_5Pd_2In_4$, 12.1 $J\cdot kg^{-1}\cdot K^{-1}$ at 18 K for $Er_5Pd_2In_4$ and 11.9 J·kg⁻¹·K⁻¹ at 8 K for $Tm_5Pd_2In_4$. The temperature averaged entropy change (TEC) for each compound with a 5 K span was also calculated, leading to the values of 3.19, 6.96, 12.63, 12.16, and 11.84 $J \cdot kg^{-1} \cdot K^{-1}$ for RE = Tb-Tm, respectively. The relative cooling power (RCP) and refrigerant capacity (RC) equal respectively 258 and 215 $J \cdot kg^{-1}$ in Tb₅Pd₂In₄, 498 and 325 $J \cdot kg^{-1}$ in $Dy_5Pd_2In_4$, 489 and 403 $J\cdot kg^{-1}$ in $Ho_5Pd_2In_4$, 403 and 314 $J\cdot kg^{-1}$ in $Er_5Pd_2In_4$ and 234 and 184 $J \cdot kg^{-1}$ in Tm₅Pd₂In₄. The magnetocaloric performance of RE₅Pd₂In₄ is comparable to that of other low-temperature magnetocaloric materials, reaching the highest values in the case of RE = Ho and Er which show good magnetocaloric performance over a wide range of temperatures. Furthermore, $RE_5Pd_2In_4$ (RE = Tb-Tm) have the highest RCP and RC among other transition metal compounds $RE_5T_2In_4$ (T = Ni, Pt).

This research was supported in part by the Excellence Initiative – Research University Program at the Jagiellonian University in Kraków.