Spin-orbit singlet magnetism - Induced atomic U- and Ru-moment in URu_2Si_2 and in Sr_2RuO_4

R. J. Radwanski¹

¹Center of Solid State Physics, Snt Filip 5, 31-150 Krakow, Poland

Despite the fact that spin-orbit (s-o) interactions are well know in the atomic physics its importance in the solid-state physics was only recognized about 15 years ago with studies of 5d/4d oxides like Sr_2IrO_4 or Sr_2RuO_4 [1,2]. Earlier a scientific papers pointing out the fundamental importance of the s-o interactions also in more-discussed 3d oxides have been rejected [3,4,5,6,7] even in the most prestigious journal as PRL or PRB with arguments that they are weak interactions, not of importance compared to U and J_H parameters of the energy size of 5 and 0.5 eV, respectively. Also, that there is no needs for such interactions for explanation of known, at that time, phenomena. A "revolution" about the importance of the s-o interactions seems to start with two Phys.Rev.Lett.'s papers of Jackeli and Khaliullin in 2009 [1,2]. In the first one they interpreted INS excitations in Sr_2IrO_4 as due to s-o interactions in the Ir^{4+} -ion in the $5d^5$ configuration [1]. In the second paper they managed to convince the PRL Editor that weak s-o interactions in the $V^{4+}(3d^1)$ -ion produce the nonmagnetic state of the whole Sr_2VO_4 oxide [2] in contrary to my earlier submissions from 1997-2010. This nonmagnetic state is clearly shown in Fig. 1 of Ref. [4] from 1999 with detailed examples of the V^{4+} ions in BaVS₃ [6,7] and in Sr₂VO₄.

In this contribution I will discuss 3d/4d/5d compounds/oxides underlying i) formation of the charge ionic state with the well-defined integer valency, like U⁴⁺ and Ru⁴⁺ ions, ii) the discrete quasi-atomic crystal-field+s-o spin-orbital low-energy electronic structure and iii) the preservation of this low-energy (below 1 meV) quasi-atomic 3d/4d/5d electronic structure also in solid crystals. As the s-o effects I will discuss the formation of the singlet nonmagnetic ground state of the U⁴⁺(5f²) and Ru⁴⁺(4d⁴) ions and their preservation in URu₂Si₂ [3] and in Sr₂RuO₄. In the presented approach, which one could call as Quantum Atomistic Solid-State Theory (QUASST), the orbital moment, as the s-o effect, will be discussed in NiO (Ni²⁺) [5] and in FeBr₂ (Fe²⁺) [8].

References:

[1] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009).

[2] G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 103, 067205 (2009).

[3] R. J. Radwanski, J. Magn. Magn. Mater. 103, L1 (1992). - URu₂Si₂: U⁴⁺, singlet GS

[4] R. J. Radwanski and Z. Ropka, *Relativistic effects in the electronic structure for the 3d param-agnetic ions*, arXiv:cond-mat/9907140 (1999).

[5] R. J. Radwanski and Z. Ropka, Acta Phys. Pol. A **97**, 963 (2000); Theory of the solid-state physics on the turn: Importance of the spin-orbit coupling for 3d-ion compounds: the case of NiO, arXiv:cond-mat/0005471.

[6] R. J. Radwanski and Z. Ropka, Anomalous temperature dependence of the susceptibility for the one-3d-electron cation, arXiv:cond-mat/9907141; Physica B **312-313**, 628 (2002).

[7] Z. Ropka and R. J. Radwanski, Almost nonmagnetic state of the V^{4+} ion: a case of $BaVS_3$, arXiv:cond-mat/0010135 (2000).

[8] Z. Ropka, R. Michalski and R. J. Radwanski, Phys. Rev. B 63, 172404 (2001);67, 172401 (2003).