Vacancy-driven magnetism of $GdMnO_{3+\delta}$ multiferroic compound

M. Mihalik jr.,¹ A. Pacanowska,² M. Orendáč,¹ K. Csach,¹ and M. Fitta²

 ¹Institute of Experimental Physics Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovak Republic
²Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland

Multiferroic GdMnO₃ compound orders antiferromagnetically below $T_{\rm N} = 40$ or 44 K [1] and undergoes order-to-order magnetic phase transition into low temperature canted magnetic phase at $T_{\rm lock}$. Transition at $T_{\rm lock}$ is hysteretic and it occurs at 20 or 25 K during the heating, but at 15 or 20 K during the sample cooling [2]. The ferroelectricity can be observed if the magnetic field is applied along the *a*-axis (using description within the *Pnma* space group) [3], but some authors report the

ferroelectricity also at zero magnetic field and in temperature range 5.1 - 7.5 K [2]. GdMnO₃ belongs to orthorhombically distorted, GdFeO₃-type perovskites. This family of compounds is naturally vacant, so the well-established general notation for these compounds is $ABO_{3+\delta}$. The physical properties can be very sensitive to δ . For example, in LaMnO_{3+ δ} the magnetic ordering temperature varies from 139 K to 154 K, depending on δ [4]. The impact of δ to "GdMnO₃" physical properties was not studied yet, but we hypothesize and we will try to proof that the huge discrepancies in the literature are in fact the impact of δ on GdMnO_{3+ δ} magnetism.

Three different samples were prepared by a vertical floating zone method. All growing conditions except for the preparation atmosphere were kept identical. The atmosphere was chosen to be O_2 , air or Ar. The choice of the atmosphere resulted to different δ in the samples. All samples exhibit T_N in temperature range 41 - 43 K, but lower temperature anomalies differ substantially: Sample prepared in air exhibits an increase of zero-field-cooling magnetization (ZFC) with increase of temperature at 12.7(1) K and then the decrease at $T_{lock} = 18.7(1)$ K. Sample prepared in Ar exhibits an increase of ZFC magnetization with increase of temperature at 7.5(1) K and decrease at $T_{lock} = 23.4(1)$ K. Sample prepared in O_2 exhibits only very weak anomalies at 11.6 K and $T_{lock} = 18.5$ K. The anomaly at T_{lock} is connected with bifurcation of the ZFC-FCW curves for samples prepared in Ar and air. ZFC-FCW curves bifurcate at 26(1) K for sample prepared in O_2 . All these facts can be considered as an experimental proof of our hypothesis. More detailed data analysis will be presented in the contribution.

References:

- [1] R. Vilarinho et al., Solid State Communications 208, 34-40 (2015)
- [2] T. Kimura et al., Physical Review B 71, 224425 (2005)
- [3] T. Arima *et al.*, Physical Review B **72**, 100102(R) (2005)
- [4] A. M. L. Lopes et al. Journal of Physics: Condensed Matter, 25, 385602 (2013)

This research has been supported by projects VEGA 2/0011/22 and PAS-SAS-2022-9