Topological features in the magnetotransport of EuIn2As2

Karan Singh,¹ Orest Pavlosiuk,¹ Tetiana Romanova,¹ Tomasz Toliński,² Shovan Dan,¹ Piotr Wiśniewski,¹ and Dariusz. Kaczorowski¹

 ¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
²Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznańn, Poland

Since a decade, topological crystalline insulators (TCIs) have been in focus due to various intriguing quantum phenomena, such as those related to axion electrodynamics or topological magnetoelectric effect [1-2]. Recently, a few TCIs have been identified amidst Eu-based materials, e.g., $EuIn_2As_2$, and $EuSn_2P_2$ [3, 4].

In this work, we comprehensively studied the magnetotransport properties of (hexagonal, P63/mmc), which orders antiferromagnetically at low temperatures, and has been recognized in the literature as an axion insulator [3]. The magnetoresistance and Hall resistivity data, collected on high-quality single crystals, revealed pronounced hysteresis effects, which likely arise due to spin-momentum-locked states coupled to the in-plane ferromagnetic order.

References:

[1] Qi, X. -L., Hughes, T. L., & Zhang, S. -C. Phys. Rev. B 78, 195424 (2008)

- [2] Wilczek, F. Phys. Rev. Lett. 58, 1799 (1987)
- [3] Riberolles, S. X. M., et.al. Nat. Commun. 12, 999 (2021)
- [4] Pierantozzi, G. M., et. al. Proc. Nat. Acad. Sci. 119, e2116575119 (2022)

This work was supported by the National Science Centre (Poland) under research grant 2021/41/B/ST3/01141.