Effects of Biodegradation on Electronic Properties of Common Lithium Manganese Oxides

<u>M. Szubka</u>,¹ E. Talik,¹ M. Bagińska,¹ M. Wojdyła,¹ K. Żebrowska,¹ M. Pilch,¹ M. Oboz,¹ A. Maximenko,² R. Paul,³ M. Hudson,³ and P. Zajdel¹

¹Institute of Physics, University of Silesia, 41-500 Chorzów, Poland ²SOLARIS National Synchrotron Radiation Centre Jagiellonian University, 30-392 Kraków, Poland ³NIST Centre for Neutron Research, 100 Bureau Dr, Gaithersburg 20899, USA

The looming era of electric cars and increased production of lithium-ion batteries opens up new questions about long term usage, disposal and chemical stability of materials used for their production. LiMn₂O₄ and L₂MnO₃ are one of the most common compounds used for cathodes in batteries sold on the consumer market. This work focuses on structural and electronic changes induced in both materials after 3-months degradation in an open air environment in an abiotic (sand) and biotic (compost) environment. The starting materials were structurally characterized using x-ray (XRD) and neutron (NPD) powder diffraction and found to crystallize in the nominal Fd-3m and C2/m space groups, respectively. The chemical composition was verified using x-ray photoelectron spectroscopy (XPS) and neutron prompt gamma activation analysis. The effects of degradation were studied by reinvestigating the samples using XRD and XPS, where the main expected effect was a possible leaching out of lithium. The studies did not reveal any statistically significant degradation of the materials both in their structure and composition. At the end a local structure was studied using x-ray absorption on the Mn K edge XANES and the results will be presented at the conference.