Magnetocaloric effect in thin films of the Laves phases $TbCo_2$ and $DyCo_2$ grown on SiO_x substrate

P. Skokowski, ¹ K. Synoradzki, ¹ T. J. Bednarchuk, ² Ł. Frąckowiak, ¹ M. Kowacz, ¹ B. Anastaziak, ¹ M. Matczak, ¹ and P. Kuświk ¹

 ¹ Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
² Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław, Poland

In the present study, we show the preparation process and magnetocaloric properties of polycrystalline thin films of intermetallic compounds TbCo₂ and DyCo₂. These compounds belong to the Laves phases [1], which are promising magnetocaloric materials in the low temperature range [2]. The samples were fabricated using the Pulsed Laser Deposition technique. The layers were deposited onto naturally oxidized silicon (100) and Al_2O_3 (11 $\overline{2}0$) [3] substrates to investigate the influence of the substrate on the quality of the grown materials. The crystal structure of the prepared materials was verified by X-ray diffraction method. The studies indicated the presence of a texturized cubic MgCu₂-type phase (space group $Fd\bar{3}m$, No 227) for thin films deposited on both substrates. Measurements of magnetization as a function of temperature revealed anomalies for thin film samples around the Curie temperatures denoted for bulk materials at $T_{\rm C}=230~{\rm K}$ for TbCo₂ and at $T_{\rm C}=135~{\rm K}$ for DyCo₂ [4,5]. The determined magnetocaloric parameters, magnetic entropy change $\Delta S_{\rm M}$ and relative cooling power RCP, for a change of magnetic field of 5 T, are equal to $-\Delta S_{\rm M}=4.3~{\rm J~kg^{-1}~K^{-1}}$ and $RCP=121~{\rm J~kg^{-1}}$ at $T=217~{\rm K}$ for TbCo₂, while $-\Delta S_{\rm M} = 4.4 \ {\rm J \ kg^{-1} \ K^{-1}}$ and $RCP = 23 \ {\rm J \ kg^{-1}}$ at $T = 127 \ {\rm K}$ for DyCo₂.

References:

- [1] S. Khmelevskyi, et al. J. Phys.: Condens. Matter 12 (2000) 9453
- [2] W. Liu, et al. Appl. Mater. Today 29 (2022) 101624
- [3] F. Robaut, et al. Appl. Phys. Lett. 69 (1996) 1643
- [4] M. Halder, et al. Phys. Rev. B 81 (2010) 174402
- [5] C. J. Wang, et al. J. Alloy. Compd. 777 (2019) 152
- P. S. acknowledges the financial support of the National Science Centre Poland with Grant No. 2021/05/X/ST5/00763