Evidence of variable range hopping in the Zintl phase EuIn₂P₂

<u>T. Toliński,</u> ¹ Q. U. Ain, ¹ K. Synoradzki, ¹ T. Romanova, ² K. Singh, ² O. Pavlosiuk, ² P. Wiśniewski, ² and D. Kaczorowski ²

¹Institute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland ²Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland

We report a comprehensive characterization of the magnetic, electrical transport, and thermal properties of single-crystalline Zintl-type material $\operatorname{EuIn_2P_2}$. The compound crystalizes with a hexagonal unit cell (space group $P6_3/mmc$) and orders magnetically at $T_{\rm C}=24~{\rm K}$ with the Eu magnetic moments aligned ferromagnetically within the ab plane but tilted alternately along the c direction. The effective and saturation magnetic moments are in good agreement with the theoretical values expected for the $\operatorname{Eu^{2+}}$ ion. Above $T_{\rm C}$, the transport behavior of $\operatorname{EuIn_2P_2}$ is dominated by short-range magnetic interactions, similar to other Zintl phases based on $\operatorname{Eu^{2+}}$, such as $\operatorname{EuIn_2As_2}[1\text{-}3]$. The temperature dependence of the electrical resistivity has been modelled in terms of variable-range hopping, inherent in the double-exchange mechanism [4]. Another indication of the latter scenario seems to be the observation for $\operatorname{EuIn_2P_2}$ of a quadratic dependence of the negative magnetoresistance on the magnetic field strength and on the scaled magnetization, reported also for $\operatorname{EuIn_2As_2}[5]$.

References:

- [1] S. Regmi et al., Phys. Rev. B 102, 165153 (2020)
- [2] M. Gong et al., Phys. Rev. B 106, 125156 (2022)
- [3] T. Toliński, D. Kaczorowski, doi:10.21468/SciPostPhysProc
- [4] F. Pfuner et al., Phys. Rev. B 77, 024417 (2008)
- [5] Y. Zhang et al., Phys. Rev. B 101, 205126 (2020)

This study was supported by the National Science Centre (Poland) under grant 2021/41/B/ST3/01141.