Two-band superconductivity in the prototypical heavy-fermion compound $CeCu_2Si_2$ studied by local magnetization measurements

J. Juraszek,¹ Yu.V. Sharlai,^{1,2} D.G. Franco,³ S. Seiro,⁴ C. Geibel,³ M. Konczykowski,⁵ and T. Cichorek¹

> ¹Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland

²B. Verkin Institute for Low Temperature Physics and Engineering, Ukrainian Academy of Sciences, Kharkiv, Ukraine

³Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany

⁴Leibniz Institute for Solid State and Materials Research, Dresden, Germany

⁵LSI, CEA/DRF/lRAMIS, École Polytechnique, CNRS,

Institut Polytechnique de Paris, Palaiseau, France

The discovery of the first heavy-fermion superconductor CeCu_2Si_2 was a turning point in the history of superconductivity because it led to the birth of research on unconventional pairing [1]. While the superconductivity of CeCu_2Si_2 is closely linked to an antiferromagnetic quantum critical point, the unexpected observations of the multiband superconductivity with absence of nodal quasiparticles have challenged the long-held dichotomy between simple *s*- and *d*-wave spin-singlet pairing states [2,3].

We present in- and out-of-plane temperature dependencies of the lower critical field $H_{c1}(T)$ of CeCu₂Si₂ (a critical temperature $T_c \simeq 0.58 \,\mathrm{K}$, S-type sample) probed by local magnetization measurements performed down to 7 mK using a newly-developed Hall-probe magnetometry [4]. For both the [100] and [001] directions, we found sharp anomalies (at $\simeq 0.34T_c$ and $\simeq 0.41T_c$, respectively) followed by moderate enhancements, indicative of two nearly decoupled bands. Moreover, the $H_{c1}(T)$ curves saturate in the limit T = 0, providing a further support for the absence of nodal quasiparticles. A result of our fitting of the $H_{c1}(T)$ curves with a self-consistent γ -model turns out to be more consistent with an s_{\pm} -wave scenario with weak interband coupling than a $d_{xy} + d_{x^2-y^2}$ model. In addition to this, we studied the effect of electron irradiation on $H_{c1}(T)$. We observe irradiation to strongly suppress the enhancement of H_{c1} connected with the small gap and this enhancement for $H \parallel [001]$ is hardly visible for a dose as small as $0.8 \,\mathrm{C/cm^2}$. However, the $H_{c1}(T)$ dependence above $\simeq 0.4T_c$, which is well described by a single-band BCS-like relation, is robust against disorder for both the crystallographic directions. In addition, the el-irradiation effect on T_c is small and nearly isotropic with a rate of 0.027(2) Kcm²/C. Summing up, the saturation of $H_{c1}(T)$ at the lowest temperatures and the strong effect of nonmagnetic disorder on the H_{c1} enhancement at $T \ll T_c$ seem to favor an s_{\pm} -wave scenario.

References:

- [1] F. Steglich et al., Phys. Rev. Lett. 43, 1892 (1979).
- [2] T. Yamashita et al., Sci. Adv. 3, e1601667 (2017).
- [3] G. Pang et al., Proc. Natl. Acad. Sci. U.S.A. 115, 5345 (2018).
- [4] J. Juraszek et al., Phys. Rev. Lett. 124, 027001 (2020).