Magnetocaloric effect in amorphous Fe₁₁Ni₇₀Zr₇B₁₂

A. Musiał,¹ H. Jaballah,² J. Horcheni,^{2,3} L.Bessais,² Z. Śniadecki,¹ and <u>B. Idzikowski</u>¹

> ¹Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland
> ²Univ Paris Est Creteil, CNRS, ICMPE, UMR 7182, 2 rue Henri Dunant, F-94320 Thiais, France
> ³Laboratoire de Physique Appliquée, Faculty of Sciences, University of Sfax, LSME, BP1171, Sfax 3018, Tunisia

The magnetocaloric effect (MCE) occurs in all magnetic materials with variations of applied magnetic field $\mu_0 H$ and is related to changes of magnetic entropy ΔS_m . MCE manifests itself in heating or cooling of the material (adiabatic temperature change, ΔT_{ad}) and is used in magnetic refrigeration, which nowadays is becoming an alternative to conventional cooling cycles.

Our investigation is focused on the MCE in structurally metastable $Fe_{11}Ni_{70}Zr_7B_{12}$ aloy with quenched-in topological disorder. The sample was prepared by melt-spinning under Ar atmosphere on a rotating copper wheel.

Our measurements are summarized as follows: X-ray diffraction confirmed the presence of a fully amorphous structure; the Curie temperature T_C of the investigated sample equals 275 K; the maximum value of magnetic entropy changes ΔS_{mpk} is 0.68 J/kgK (determined for $\mu_0 H = 7$ T); a rather high value of δT_{FWHM} was obtained which we associate with topological disorder. A relatively low saturation magnetization M = 35 Am²kg⁻¹ is a consequence of significant content of Ni, which has a weaker ferromagnetism than Fe or Co, common elements in well-known amorphous or nanocrystalline soft magnetic materials.