

Relativistic spin-momentum locking in magnetic systems

C. Autieri,¹ X. Gong,¹ and A. Fakhredine²

¹*International Research Centre Magtop,*

*Institute of Physics, Polish Academy of Sciences,
Aleja Lotników 32/46, PL-02668 Warsaw, Poland*

²*Institute of Physics, Polish Academy of Sciences,
Aleja Lotników 32/46, 02668 Warsaw, Poland*

Spin-momentum locking in altermagnets has been deeply explored in the non-relativistic limit[1]. Including spin-orbit coupling, the spin-momentum locking differs among the three spin components, S_x , S_y , and S_z , forming the relativistic spin-momentum locking. We considered orthorhombic YVO_3 and hexagonal MnTe , for which we perform density functional theory calculations. For YVO_3 , the relativistic locking comprises s-, d_{xy} -, and d_{xz} -wave. In MnTe , the dominant component S_y of MnTe inherits the polarized charge distribution and the nonrelativistic spin-momentum locking bulk g-wave, but the breaking of the C_{6z} rotational symmetry by the Néel vector lowers the symmetry from g-wave to d-wave. The relativistic spin-momentum locking for MnTe is composed of d_{xz} -, d_{yz} - and s-wave. Despite small magnitudes in real space, the canted spin components contribute significant spectral weight in k-space, impacting k-space properties[2]. We extend these results to the non-centrosymmetric altermagnetic phase [3] and to ferromagnetic phases[4], where we prove the relativistic spin-momentum locking even for spin-components which are not allowed by symmetry in the real space.

References:

- [1] L. Smejkal, J. Sinova, and T. Jungwirth Phys. Rev. X 12, 040501 (2022)
- [2] C. Autieri and A. Fakhredine, J. Phys. Chem. Lett. 17, 449 (2026)
- [3] A. Fakhredine, G. Cuono, J. Skolimowski, S. Picozzi, and C. Autieri. In manuscript.
- [4] X. Gong, A. Fakhredine and C. Autieri. Submitted.

This research was supported by the "MagTop" project (FENG.02.01-IP.05-0028/23) carried out within the "International Research Agendas" programme of the Foundation for Polish Science, co-financed by the European Union under the European Funds for Smart Economy 2021-2027 (FENG).