

Prezentacja aparatury zakupionej przez IKiFP Mikroskopy LEEM i PEEM

UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ ROZWOJU REGIONALNEGO

Cechy ogólne mikroskopów

- do badania powierzchni; czułość ~Å ~ nm
- szeroka gama kontrastów
 - → topograficzny
 - → strukturalny
 - → chemiczny
 - → magnetyczny
- •medium obrazujące powolne elektrony: ~0eV-500eV
 - (różne metody ich wzbudzania)
- obrazowanie w mezoskali : >3nm
- mikroskopia bezpośrednia (nieskanująca)
 - → obrazowanie w czasie rzeczywistym
 - → obrazowanie w przestrzeni rzeczywistej i odwrotnej
- obrazowanie w wysokich temperaturach 1200°C

Obrazowanie przestrzeni rzeczywistej

Obrazowanie przestrzeni odwrotnej

Zasada działania mikroskopów

Zasada działania mikroskopów

parametry mikroskopów

SPE-PEEM

- FoV: 1.25 150µm
- rozdzielczość PEEM: ~11nm
- rozdzielczość XPEEM: ~25nm (kryterium 16-84%)
- rozdzielczość en. analizatora ~150meV

LEEM

- FoV: 1.5 80μm
- Rozdzielczość: ~3nm

wyposażenie mikroskopów

Możliwości LEEM-u

Możliwości LEEMu: Praca w czasie rzeczywistym

Depozycja 1ML Fe/W(110) @ 600°C

Możliwości LEEMu: Praca w wysokich temperaturach

Powierzchniowy tlenek wolframu -przejście fazowe

Możliwości LEEMu: Obrazowanie domen kierunkowych

Faza B

Obr. jasnym polu

strukturalne domeny kierunkowe

Obr. w ciemnym polu

5.5 tygodnia pomiarów w SLS na wiązce NanoXas hv: U, 1

Obrazowanie z kontrastem chemicznym

1.29nmAu/0.12nmMo/16nmEuFe₅ /500nmMo/Si

Praca wykonana we współpracy z grupą eksperymentalną prof. dr hab. Jacka Szade. Instytut Fizyki im. Augusta Chełkowskiego, Uniwersytet Śląski, Katowice,

Obrazowanie z mag-chem układów warstwowych

20Å Co/27Å Au/200Å Fe/W(110)

XMCD L₃ Fe

 $\mathsf{XMCD}\ \mathsf{L}_{\mathsf{3}}\ \mathsf{Co}$

Obraz różnicowy (XMCD L₃ Co – XMCD L₃ Fe)

Obrazowanie z mag-chem nanostruktur warstwowych

Py/Au/Co (Ni₈₀Fe₂₀-2nm/Au-2.2nm/Co-0.6nm/Au-2.2nm)₁₀

Próbki Py/Au/Co prof. F. Stobieckiego

niestrukturyzowana

strukturyzowana

Obrazowanie z kontrastem magnetycznym

Paski Fe/W(110) (Fe wygrzane @ 550 ºC)

Obrazowanie magnetyczne w czasie rzeczywistym

SRT w Fe/W(110)

Obserwacja przejścia w trakcie parowania warstwy Fe

GOSPODARKA

2013-01-07

Obrazowanie magnetyczne w szerokim zakresie temperatur

Monokryształ magnetytu

Obrazy XMCD Linia L₃ Fe

Praca wykonana we współpracy z grupą eksperymentalną prof. dr hab. Andrzeja Kozłowskiego Instytut Fizyki i Informatyki Stosowanej AGH, Kraków, CORPORATE NAME

LAB

bieżące prace rozwojowe

LEEM

- Rozbudowa o korektor aberracji
 - Rozdzielczość ~ 1nm
 - Transmisja ~9x
- Zakup analizatora energii
- Instalacja tymczasowa SLS
- Instalacja docelowa POLARIS —

Pierwszy na świecie AC-LEEM przy synchrotronie

SPE-PEEM

 Zakup źródła UV od dużej intensywności o en. do 6.9eV (+monochromator+ polaryzatory)

> Metoda wykorzystuje dychroizm w fotoemisji progowej związany z pasmami walencyjnymi

Laboratoryjny PEEM z kontrastem magnetycznym

