INFLUENCE OF CHEMICAL SUBSTITUTIONS ON ANISOTROPIC UPPER CRITICAL FIELD IN MgB$_2$: IMPACT OF FERMI SURFACE CHANGES

R. Puzniaka, A. Wisniewskia, J. Junb, S.M. Kazakovb, J. Karpinskib

aInstitute of Physics, Polish Academy of Sciences, PL 02-668 Warsaw, Poland

bSolid State Physics Laboratory, ETH Zurich, CH-8093 Zurich, Switzerland

Specific band structure of MgB$_2$, with two bands π and σ involved in superconductivity, leads to high critical temperature, T_c, of 39 K and temperature and field dependent anisotropy of superconducting parameters. Chemical substitutions lead to modification of band structure and therefore influence all superconducting parameters, especially T_c, the upper critical field, H_{c2}, and its anisotropy, γ_{H}. Magnetic investigations of Mg$_{1-x}$Al$_x$B$_2$ crystals show the slight increase of $H_{c2||c}$ for the samples with small x, significant reduction of γ_{H} at lower temperatures for Al substituted samples as compared to this of unsubstituted crystals. In Mg(B$_{0.94}$C$_{0.06}$)$_2$ single crystals $H_{c2||c}(0) \approx 85$ kOe is more than twice as large as that one of ≈ 31 kOe in unsubstituted MgB$_2$. Anisotropy of H_{c2} decreases to about 4 at low temperatures, the value considerably lower than that in MgB$_2$, and its temperature dependence is much less pronounced. The corresponding $H_{c2||ab}(0) \approx 330$-350 kOe is likely close to the maximum enhancement of H_{c2} due to chemical substitutions. The enhancement of H_{c2} can be explained as a disorder effect only if the main result of disorder is to make the π bands more dirty while not affecting the σ bands as much. However, in addition to disorder and weakened electron-phonon coupling, the impact of the Fermi level shifting into a region with lower σ Fermi surface velocities has to be taken into account in the analysis of H_{c2} data as well.

Subject category:
1. Correlated Electrons and High Temperature Superconductors

Presentation mode:
oral

Corresponding author:
Roman Puzniak

Address for correspondence:
Institute of Physics
Polish Academy of Sciences
Al. Lotnikow 32/46
02-668 Warsaw
Poland

Email address:
puzni@ifpan.edu.pl