IMPORTANCE OF SPIN FLUCTUATIONS IN COUPLED TWO-DIMENSIONAL MAGNETIC TRILAYERS

H. Wende, A. Scherz, C. Sorg, P. Jensen, M. Bernien, N. Ponpandian, K. Baberschke

Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

Two ultrathin ferromagnetic films of Co and Ni separated by a non-magnetic spacer of Cu are taken to study the spin-spin correlations of weakly coupled ferromagnets. The Ni film thickness ranging between \(d_{\text{Ni}} = 2 - 6 \) monolayers (ML) is chosen to study the \(2D \rightarrow 3D \) dimensional crossover in ferromagnets. X-ray magnetic circular dichroism is the ideal technique to study the temperature dependence of the magnetization of Co and Ni separately. The spacer thickness ranges from \(d_{\text{Cu}} = 2 - 8 \) ML to monitor the oscillatory behavior of the interlayer exchange coupling. The measured temperature-dependent magnetizations and the corresponding Curie temperatures are accompanied by a microscopic many-body Green’s function theory. Both experiment and theory give firm evidence that for nanostructured magnets a static mean field description is insufficient. It is demonstrated that higher order spin-spin correlations are important and explain the observed increase of the Curie temperature by up to \(\sim 200\% \) due to the interlayer exchange coupling. The results are visualized in a three-dimensional diagram for the first time as a function of both the Ni thickness and the Cu spacer thickness. Supported by BMBF (05 KS4 KEB/5) and DFG (Sfb 290, TP A2).

Subject category: 2. Magnetic Films, Surfaces and Multilayers

Presentation mode: oral

Corresponding author: Heiko Wende

Address for correspondence: Institut für Experimentalphysik
Freie Universität Berlin
Arnimallee 14
D-14195 Berlin
Germany

Email address: wende@physik.fu-berlin.de