Kondo effect in the presence of ferromagnetism
J. Martinek, J. Barnaš, J. König, G. Schön,
S. Maekawa, J. von Delft, D.C. Ralph

Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań, Poland
Institut für Theoretische Festkörperphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Department of Physics, Adam Mickiewicz University, 61-614 Poznań, Poland
Institut für Theoretische Physik III, Ruhr-Universität Bochum, 44780 Bochum, Germany
Physics Department and Center for NanoScience, LMU München, 80333 München, Germany
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca NY 14853, USA

We study the Kondo effect in a quantum dot (QD), which is coupled to ferromagnetic
leads, and analyze its properties. Based on a scaling analysis we first show that a splitting
of the Kondo resonance similar to the usual magnetic-field-induced splitting will appear
due to exchange interaction with leads. The most important result is that this splitting
can be fully compensated by an appropriately tuned external magnetic field and the
strong coupling limit of the Kondo effect can be restored. We adapt the NRG method
to the case of a QD coupled to ferromagnetic leads. We show that the Kondo effect in the
presence of ferromagnetic leads has unique properties such as a strong spin polarization
of the density of states at the Fermi level. In addition, we find, surprisingly, that even
in the presence of strong spin asymmetry in the QD spectral function at the Fermi level,
the ground state of the system has a fully compensated local spin and displays Fermi
liquid behavior. We also analyze the nonlinear transport through the QD. We find that
for parallel alignment of the lead magnetizations the zero-bias anomaly is split. This
splitting can be removed by appropriately tuning of a magnetic field. In the antiparallel
configuration of the lead magnetizations and symmetric coupling no splitting occurs.
New experimental results for a single C_{60} molecule confirm our theoretical predictions.

Subject category:
2. Magnetic Films, Surfaces, Multilayers and Nanostructures

Presentation mode:
oral

Corresponding author:
J. Martinek

Address for correspondence:
Institute of Molecular Physics
Polish Academy of Sciences
ul. M. Smoluchowskiego 17
60-179 Poznan, POLAND

Email address:
martinek@ifmpan.poznan.pl