The properties of a charge density wave phase in the anharmonic Holstein-Hubbard model: A variational approach.

P. Grzybowski
Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85,
PL-61-614 Poznań, Poland

The Holstein-Hubbard model with anharmonic phonons is treated within a variational canonical transformation framework. The non-perturbative nature of this method allows a reliable inclusion of the effects of anharmonicity. An effective electron Hamiltonian is derived, in which importantly the anharmonicity produces relatively large correlated hopping terms. The half-filled $n = 1$ case is studied, in which the ground state is a charge density wave phase. The ground state order parameter and critical temperature dependence on the anharmonicity parameter α is calculated. A reasonable agreement with earlier Quantum Monte Carlo method results is shown.

Subject category:
1. Correlated Electrons and High Temperature Superconductors

Presentation mode:
poster

Corresponding author:
P. Grzybowski

Address for correspondence:
Solid State Theory Division, Institute of Physics, Adam Mickiewicz University,
ul. Umultowska 85, PL-61-614 Poznań, Poland

Email address:
grzyb@amu.edu.pl