STRUCTURE, TRANSPORT AND MAGNETIC CHARACTERIZATION OF La$_{0.89}$Sr$_{0.11}$MnO$_3$/YBa$_2$Cu$_3$O$_7$ SUPERLATTICES

A. Tsareva, I. Komissarova, P. Dluzewskia, W. Paszkowicza, R. Minikayeva, M. Sawickia, B. Dabrowskib, C. Kimballb and P. Przyluskia

aInstitute of Physics, Polish Academy of Sciences, Warsaw, Poland.

bDept. of Physics and the Institute for Nanoscience, Engineering and Technology Northern Ill. University, De Kalb, Illinois.

We report on structural, transport and magnetic studies of La$_{0.89}$Sr$_{0.11}$MnO$_3$/YBa$_2$Cu$_3$O$_7$ (LSMO/YBCO) superlattices. For this doping level (x=0.11) the LSMO system is a ferromagnetic insulator (FMI). Proximity effect between a ferromagnetic insulator and YBCO system is very interesting problem, both for fundamental research and application. A series of LSMO/YBCO superlattices have been fabricated using a high pressure sputtering, with fixed LSMO layer thickness at 8 unit cells (u.c.) and varying YBCO layer thickness from 1 to 8 u.c. c–axis layer thickness. An onset of superconducting transition is observed beginning from the samples with 2 u.c. YBCO layer thickness. Magnetization hysteresis curves measured close to superconducting transition show interplay between Meissner currents in YBCO layers and magnetic field present in LSMO layers.

Subject category:
2. Magnetic Films, Surfaces, Multilayers and Nanostructures

Presentation mode:
poster

Corresponding author:
P. Przyluski

Address for correspondence:
Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland.

Email address:
przys@ifpan.edu.pl