$9.7~\mathrm{cm}$

First-principles study of magnetization relaxation enhancement and spin-transfer in thin magnetic films

Maciej Zwierzycki^{1,2}, Yaroslav Tserkovnyak³, Paul J. Kelly⁴, Arne Brataas⁵, Gerrit E. W. Bauer⁶

¹Max Planck Institute for Solid State Research, Stuttgart, Germany ²Institute of Molecular Physics, P.A.S., Poznań, Poland

³Harvard University, Massachusetts 02138, USA

⁴Faculty of Applied Physics and MESA+, University of Twente, The Netherlands

⁵Norwegian University of Science and Technology, Trondheim, Norway

⁶Delft University of Technology, The Netherlands

The interface-induced magnetization damping of thin ferromagnetic films in contact with normal-metal layers is calculated from first principles for clean and disordered Fe/Au and Co/Cu interfaces. Interference effects arising from coherent scattering turn out to be very small, consistent with a very small magnetic coherence length. Because the mixing conductances which govern the spin transfer are to a good approximation real valued, the spin pumping can be described by an increased Gilbert damping factor but an unmodified gyromagnetic ratio. The results also confirm that the spin-current induced magnetization torque is an interface effect.

-13.4 cm -

Subject category :

2. Magnetic Films, Surfaces, Multilayers and Nanostructures

Presentation mode : poster

Corresponding author : M. Zwierzycki

Address for correspondence : Heisenbergstrasse 1, D-70569 Stuttgart, Germany

Email address : M.Zwierzycki@fkf.mpg.de