We analyse the critical sound attenuation in the antiferromagnet MnF$_2$ above its Neel temperature. A general formula for the acoustic self-energy, derived in the model in which a sound mode is coupled to both the order-parameter fluctuations as well as to the energy mode, is applied to interpret the experimental data in MnF$_2$. It has been shown that very interesting competition between three asymptotic singularities is responsible for the behaviour of the sound attenuation coefficient in the high-temperature phase. The relative strength of these terms depends also on the ultrasonic frequency. For high frequency also a background attenuation starts playing an important role.

Subject category :
5. Phase Transitions and Critical Phenomena

Presentation mode :
poster

Corresponding author :
A. Pawlak

Address for correspondence :
Institute of Physics, A. Mickiewicz University, Umultowska 85, Poznań, Poland

Email address :
pawlak@amu.edu.pl