ANISOTROPY DISTRIBUTION IN Ni-Fe/Au/Co/Au MULTILAYERS

J. Dubowika, F. Stobieckia, I. Gościańskab, M. Kociembaa,b, S. Bednarskia

a Institute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań, Poland
b Department of Physics, A.Mickiewicz University, 61-614 Poznań, Poland

Multilayers comprising thin exchange decoupled Ni-Fe (2 nm) and Co (0.4, 0.6, 0.8, and 1.2 nm) layers in contact with Au (2 nm) are known to possess alternating in-plane (Ni-Fe) and out-of-plane anisotropies (Co). However, little is known how the anisotropy is distributed across these multilayers. In this contribution we investigated anisotropy distribution in [Ni-Fe/Au/Co/Au]10 multilayers grown by sputtering on Si (100) substrates. The samples were studied by means of ferromagnetic resonance at X- and Q-bands. The angular dependent energy density observed can be explained by two main contributions to the magnetic anisotropy: the uniaxial shape anisotropy, K_{sh}, and an effective second order anisotropy, K_{Ueff}. Due to negligible exchange interlayer coupling, the Ni-Fe and Co layers can be regarded as independent. It is concluded that for Ni-Fe layers the uniaxial anisotropy negligible except the first layer(s) next to the substrate. The uniaxial perpendicular anisotropy of Co layers depends on Co thickness in a standard way, $K_{Ueff} \propto t$, and varies as a function of the position from the substrate in a range of $\sim 10\%$ of K_{Ueff} (i.e., $\sim 1.5 \times 10^6$ erg/cm3). Detailed information on the internal magnetic structure of the multilayers can be inferred from our investigations.

Subject category:
5. Nano-structure, Surfaces, and Interfaces

Presentation mode:
oral

Corresponding author:
J. Dubowik

Address for correspondence:
Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań, Poland

Email address:
dubowik@ifmpan.poznan.pl