MODELLING CHARGE, ORBITAL AND MAGNETIC ORDER IN La$_{1-x}$Sr$_x$MnO$_4$ MONOLAYER MANGANITES

Krzysztof Rościszewskia and Andrzej M. Oleśa,b

aMarian Smoluchowski Institute of Physics, Jagellonian University,
Reymonta 4, PL-30059 Kraków, Poland
bMax-Planck-Institut FKF, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

The model which describes correlated e_g electrons in doped, monolayer manganites [1] was recently studied by using correlated wave functions [2]. The effective Hamiltonian [3] takes into account: the kinetic energy of e_g electrons, the crystal-field splitting between $x^2−y^2$ and $3z^2−r^2$ orbitals, on-site Coulomb interactions, the interaction between e_g electrons and core $S = 3/2$ spins due to t_{2g} electrons, antiferromagnetic superexchange interaction between core spins, and finally the coupling between e_g electrons and Jahn-Teller modes. We have demonstrated that this model is in general capable of reproducing the phase situation in monolayer manganites [3]. Quite recently, it was found [4] that the splitting between the occupied and empty e_g states at every site is quite large in La$_{1-x}$Sr$_x$MnO$_4$ (exceeding by far any previous estimates) and here we investigate the reasons and physical consequences of this large splitting.

Subject category :
1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode :
poster

Corresponding author :
Krzysztof Rościszewski

Address for correspondence :
Marian Smoluchowski Institute of Physics
Jagellonian University
Reymonta 4
PL-30059 Kraków
Poland

Email address :
krzysztof.rosciszewski@uj.edu.pl