THE ELECTRONIC AND ELECTROCHEMICAL PROPERTIES OF THE LaNi_5-BASED ALLOYS

A. Szajeka, A. Jeziorskia, M. Nowakb, and M. Jurczykb

aInstitute of Molecular Physics, Polish Academy of Sciences, Poznań Poland
bInst. of Materials Sci. and Engineering, Poznań Univ. of Technology, Poznań Poland

LaNi_5-type alloys exhibit desirable electrochemical properties and are among the most promising electrode materials for nickel-metal hydride (Ni-MH$_x$) batteries. They crystallize in the hexagonal CaCu_5 structure and at room temperature can absorb up to 6 H/f.u.. Partial replacement of Ni by Al, Co, and Mn leads to an enhancement of the discharge capacity. Nanocrystalline LaNi_5-type materials have been prepared by mechanical alloying followed by annealing. The electrochemical properties have been investigated for the following materials LaNi_5, LaNi_4Al, LaNi_3CoAl and $\text{LaNi}_{15/4}\text{Mn}_{3/4}\text{Al}_{1/4}\text{Co}_{1/4}$. Changes in electronic structure are analyzed based on full-potential local-orbital minimum basis bandstructure code FPLO [1], effects of chemical disorder in occupancy of 2c and 3g sites are considered within coherent potential approximation [2]. Total energy calculations allow predicting of site preference by Al, Mn and Co atoms in the CaCu_5-type unit cell. The impurities reduce the densities of electronic states at the Fermi level comparing to pure LaNi_5 compound.

This work was supported by the Grant No. 3 T10A 033 29

Subject category :
3. Magnetic Structure and Dynamics

Presentation mode :
poster

Corresponding author :
A. Szajek

Address for correspondence :
Institute of Molecular Physics
Polish Academy of Sciences
ul. Smoluchowskiego 17, 60-179 Poznań, Poland

Email address :
szajek@ifmpan.poznan.pl