Magnetic, transport and positron annihilation studies of
Zn$_{1-x}$(Mn;Co)$_x$GeAs$_2$ semimagnetic semiconductor

L. Kilanskia,b, M. Gorskaa, V. Domukhovskia, W. Dobrowolskia,
A. Zubiagab, F. Tuomistob, J. R. Andersonc, C. Rotunduc,
S. Varniavskiid, and S. F. Marenkind

aInstitute of Physics, Polish Academy of Sciences, Warsaw, Poland
bDepartment of Engineering Physics, Helsinki University of Technology, Espoo, Finland
cDepartment of Physics, University of Maryland, College Park, USA
dKurnakov Institute of General and Inorganic Chemistry RAS, Moscow, Russia

We have performed magnetic, transport, and defect studies of Zn$_{1-x}$(Mn;Co)$_x$GeAs$_2$
mixed crystals with 0.052 $\leq x \leq$ 0.182. Magnetic investigations showed appearance of a
ferromagnetic phase for $x \geq$ 0.078 with $T_C > 320$ K. Transport measurements performed
at 1.3 $\leq T \leq$ 400 K included basic resistivity and Hall effect measurements as well as
high magnetic field (up to $B = 13$ T) studies. Our results showed p-type conductivity
(semiconducting or metallic, depending on the alloy composition) with carrier concen-
trations $p > 10^{19}$ cm$^{-3}$. High magnetic field studies revealed negative magnetoresistance
for $T < 15$ K (up to 33%) with values strongly depending on the sample composition.
We were also studying Schottky type defects using positron annihilation spectroscopy
technique. Results of positron lifetime and Doppler broadening measurements showed
that there are significant differences in defect parameters for samples with different
compositions. Performed measurements showed that via alloying we are able to control
significantly many properties of studied semimagnetic semiconductor.

Subject category :
4. Spin Electronics and Magneto-Transport

Presentation mode :
poster

Corresponding author :
L. Kilanski

Address for correspondence :
Lukasz Kilanski (ON 1.3)
Institute of Physics,
Polish Academy of Sciences,
Al. Lotnikow 32/46,
02-668 Warsaw, Poland

Email address :
kilan@ifpan.edu.pl