First principles studies of magnetic properties of wurtzite \(\text{Ga}_{0.9375}\text{TM}_{0.0625}\text{N}, \) (TM=V, Cr, Mn, Fe, Co, Ni)

J.Kaczkowski\(^a\), A.Jezierski\(^a\), P.Bogusławski\(^b\), O.Volnianska\(^b\), and I.Gorczyca\(^c\)

\(^a\)Institute of Molecular Physics Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznan, Poland
\(^b\)Institute of Physics Polish Academy of Sciences, Al.Lotników 32, 02-668 Warsaw, Poland
\(^c\)Institute of High Pressure Physics "Unipress", Polish Academy of Sciences, ul. Sokolowska 29/37, 01-142 Warsaw, Poland

The aim of this work is study of the influence of V, Cr, Mn, Fe, Co and Ni on the electronic and magnetic properties of \(\text{Ga}_{1-x}\text{TM}_x\text{N} \) in wurtzite structure. The electronic structure of zinc-blende phase were studied recently \([1, 2]\). In this work we present the results obtained by ab initio method based on the density functional theory within generalized gradient approximation (GGA) and the pseudopotential method \([3]\). The calculations were performed for 32-atoms supercell model. The transition metal was substitute in the place of Ga. For Cr, Fe, Ni and Mn the electronic states at the Fermi level are 100% spin polarized, however for V and Co atoms the densities of states at the Fermi level are partially polarized.

References

Subject category:
4. Spin Electronics and Magneto-Transport

Presentation mode:
poster

Corresponding author:
J. Kaczkowski

Address for correspondence:
Institute of Molecular Physics Polish Academy of Sciences
ul. M. Smoluchowskiego 17
60-179 Poznan, Poland

Email address:
Jakub.Kaczkowski@ifmpan.poznan.pl