EXCHANGE COUPLING IN WEDGED Fe/Ti/Fe TRILAYERS

L. Smardza, H. Niedobab K. Smardzc,

aInstitute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17 St.,
60-179 Poznań, Poland

bGEMAC de l’Université de Versailles, 45, av. Des Etas - Unis, 78035 Versailles, France

cInst. of Mat. Sci. and Engin., Poznań University of Technology, Poznań, Poland

Fe/Ti/Fe trilayers with wedge-shaped Ti interlayer were prepared using UHV magnetron sputtering. The planar growth and interface alloying of the Fe and Ti layers was confirmed in-situ by X-ray photoelectron spectroscopy. Furthermore, structural and magnetisation studies revealed spontaneous formation of an quasi-amorphous Fe-Ti alloy layer at the interfaces during the deposition process. The hysteresis measurements showed that the Fe layers are weakly ferromagnetically (FM) coupled for \(\sim 3.5 \text{ nm} \sim d_{\text{Ti}} \sim 2 \text{ nm} \). The above behaviour was also revealed by systematical domains observation during the magnetisation reversal process in a magnetic field equal to \(H_c \). Above \(d_{\text{Ti}} > 3.5 \text{ nm} \) a progressive transition to large independent domains takes place. The rapid decrease of the interlayer exchange coupling could be explained by its strong damping due to formation of a non-magnetic quasi-amorphous Ti-Fe alloy layer at the interfaces.